Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem bài này tại đây:
http://d.violet.vn/uploads/resources/615/2779702/preview.swf
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau
vd: A={xeN/3<x<9}
thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung
co sua nhu vay A=3,4,5,6,7,8
ko biet hay sai mong ae giup minh
Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)
=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)
=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)
Mấy cái kia làm tương tự cậu nhé
Dấu "=" xảy ra khi và chỉ khi a=b=c=1
abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)
Đặt \(a=\frac{1}{x}\); \(b=\frac{1}{y}\); \(c=\frac{1}{z}\)(x, y, z > 0)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)
Tương tự, ta có :
\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)
\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)
Ta cần cm : \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Áp dụng bđt Cau chy cho x, y, z > 0
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Ta cần cm : \(\frac{x+y+z}{2}\ge\frac{3}{2}\)
\(\Leftrightarrow x+y+z\ge3\)
Áp dụng bđt Cauchy cho x, y, z> 0
\(x+y+z\ge3\sqrt[3]{xyz}=3\)
trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm
Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :
\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Svac-xơ ta có :
\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)
\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)
\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)
\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)
\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)
Ta cần CM \(M\geq \frac{4}{3}\)
\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)
\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)
\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)
Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=2$
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
cauchy-schwarz:
\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)