Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}a_1^2+a_2^2\ge2a_1a_2\\a_1^2+a_3^2\ge2a_1a_3\\...................\\a_{n-1}^2+a_n^2\ge2a_{n-1}a_n\end{matrix}\right.\)
\(\Rightarrow\left(n-1\right)\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)+\left(a_1^2+a_2^2+...+a_n^2\right)\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
Áp dụng BĐT căn trung bình bình phương ta có:
\(\sqrt{\dfrac{a_1^2+a_2^2+....+a^2_n}{n}}\ge\dfrac{a_1+a_2+...+a_n}{n}\)
\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\left(\dfrac{a_1+a_2+...+a_n}{n}\right)^2\)
\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n^2}\)
\(\Leftrightarrow a_1^2+a_2^2+....+a^2_n\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+....+a^2_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
Khi \(a_1=a_2=...=a_n\)
Cho e sửa chỗ \(\Sigma\frac{a_1}{1+a_2^2}\) là \(\frac{a_1}{1+a_2^2}+\frac{a_2}{1+a_3^2}+......+\frac{a_n}{1+a_1^2}\) nha mn
ồ...Hóa ra đây là: đáp án
Sao bn không làm hết luôn đi
mà lớp 8 đã học đến kiến thức này rồi á???
Sao mà mk thấy sao sao í..
Chj mk hok lp 9 rồi mà có thấy khi nào chj làm những bài như thế này đâu (cho zù chj mk là h/s giỏi toán )
Thực chất đây cũng có thể là bài khó lớp 7, nhưng mình thấy có hằng đẳng thức nên xếp vào lớp 8 :)