K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử 

\(a_1< a_2< ...< a_{2015}\)

Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra

\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)

Suy ra 

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)

Mâu thuẫn với giả thiết

Do đó điều giả sử là sai

Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau

12 tháng 8 2016

quen quá lolang

20 tháng 9 2019

Cho e sửa chỗ \(\Sigma\frac{a_1}{1+a_2^2}\) là \(\frac{a_1}{1+a_2^2}+\frac{a_2}{1+a_3^2}+......+\frac{a_n}{1+a_1^2}\) nha mn 

22 tháng 9 2019

\(\Leftrightarrow a_1a_2+...+a_ka_1\le a_1+a_2+...+a_k.lay:a_1=a_2=...=a_k=5\Rightarrow sai\)

Bạn xét hiệu là ra nhé :

Đặt : \(Q=a_1^5+.....+a_{2019}^5\)

Xét hiệu : \(Q-P\)

Do vai trò như nhau nên ta xét \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a-2\right)\left(a+2\right)-5a⋮30\)

13 tháng 2 2020

dòng cuối viết sai kìa

phải là \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮30\)