K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

28 tháng 2 2017

=1/22+1/32+1/42+...+1/1002<1

10 tháng 4 2018

Ta có :  \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!! 

8 tháng 6 2017

đề cần chứng minh nhỏ hơn 1 hay 11

nếu 1 thì

\(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\)

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrowđcm\)

nếu nhỏ hơn 11 thì làm như thế thêm câu

vì đẳng thức trên <1<11

=>đcm

9 tháng 6 2017

chỉ <1 thôi 

16 tháng 3 2018

Đăng từ bài thôi bạn à!

a) Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)

..............................

\(\frac{1}{n^2}< \frac{1}{n-1}-\frac{1}{n}\)

___________________________________________

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}=\frac{1}{n+1}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) (đpcm)

26 tháng 4 2019

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)

b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)

26 tháng 4 2019

a)A=1+1/22+1/32+....+1/1002

      <1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2

b)B=1/22+1/32+...+1/20122

     <1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012

     1/2-1/2013=2011/4026<2011/2012<1

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

9 tháng 8 2019

 Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)

=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

=> \(A>\frac{1}{5}-\frac{1}{101}\)

=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)

Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{4}-\frac{1}{100}\)

=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)

9 tháng 8 2019

dễ mà k đi