K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

 Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)

=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

=> \(A>\frac{1}{5}-\frac{1}{101}\)

=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)

Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{4}-\frac{1}{100}\)

=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)

9 tháng 8 2019

dễ mà k đi

22 tháng 3 2017

Cho mình xin lỗi là < 1 chứ không phải 11 đâu

18 tháng 3 2018

\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{17}\right)\)

Ta có: \(\frac{1}{5}=\frac{1}{5};\frac{1}{6}< \frac{1}{5};\frac{1}{7}< \frac{1}{5};\frac{1}{8}< \frac{1}{5};\frac{1}{9}< \frac{1}{5}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}< \frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\left(5ps\right)=\frac{1}{5}\cdot5=1\left(1\right)\)

Lại có: \(\frac{1}{10}< \frac{1}{8};\frac{1}{11}< \frac{1}{8};...;\frac{1}{17}< \frac{1}{8}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+...+\frac{1}{17}< \frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\left(8ps\right)=\frac{1}{8}\cdot8=1\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}< 1+1=2\)

P/s: k hỉu thì hỏi 

7 tháng 4 2019

Tại sao lại phải so sánh 5ps đầu vs 1/5 và các ps còn lại vs 1/8 mà ko phải là ps khác vậy?

16 tháng 9 2018

( 99 - 1 ) : 2 + 1 = 50 ( số )

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

Ta có : \(S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

       \(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

      \(\Rightarrow S>\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)           (1)

Ta lại có : \(S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

          \(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

           \(\Rightarrow S< 1-\frac{1}{9}=\frac{8}{9}\)

Từ (1) và (2)  \(\Rightarrow\frac{2}{5}< S< \frac{8}{9}\)          ( đpcm )

14 tháng 7 2017

a, Ta có:

\(\frac{1}{2^3}< \frac{1}{1\cdot2\cdot3};\frac{1}{3^3}< \frac{1}{2\cdot3\cdot4};\frac{1}{4^3}< \frac{1}{3\cdot4\cdot5};...;\frac{1}{n^3}< \frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

Đặt \(A'=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{\left[n-1\right].n}-\frac{1}{n\left[n+1\right]}\)

\(\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{n\left[n+1\right]}=\frac{1}{2}-\frac{1}{n\left[n+1\right]}=\frac{1}{4}-\frac{1}{2n\left[n+1\right]}< \frac{1}{4}\)

Vậy \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}< \frac{1}{4}\Leftrightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< \frac{1}{4}\)

b,

\(C=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}=1+\frac{1}{3}+1+\frac{1}{3^2}+1+\frac{1}{3^3}+...+1+\frac{1}{3^{98}}\)

\(=\left[1+1+1+...+1\right]+\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

Đặt \(C'=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3C'=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3C'-C'=\left[1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right]-\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=1-\frac{1}{3^{98}}\)

\(\Rightarrow C'=\frac{1-\frac{1}{3^{98}}}{2}< 1\)

\(\Rightarrow98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}< 98+1=99< 100\)

\(\Rightarrow\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)

c,

\(D=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{39}}\)

\(4D=5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\)

\(4D-D=\left[5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\right]-\left[\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}+\frac{5}{4^{39}}\right]\)

\(3D=5-\frac{5}{4^{39}}\Leftrightarrow D=\frac{5-\frac{5}{4^{39}}}{3}< \frac{5}{3}\)

Vậy:...........

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA

20 tháng 4 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\left(đpcm\right)\)

20 tháng 4 2019

Ta có: \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)