K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

\(7^{n+1}+16.7^n+6^{2n+1}⋮29\)(1)

Ta có: \(7^{n+1}+16.7^n+6^{2n+1}\)

\(=6.6^{2n}-6.7^n+29.7^n\)

\(=6\left(36^n-7^n\right)+29.7^n⋮29\)

Vì \(36^n-7^n⋮\left(36-7\right)\)

Vậy (1) đúng với mọi số tự nhiên n.

25 tháng 8 2017

b,

Tam giác MNC vuông tại C có K là trung điểm của MN nên 

KC=KM=KN

ta có: OK đi qua trung điểm của dây MN nên OK là trung trực của MN

KO2=OM2-KM2=OM2-KC2

=> KO2+KC2=OM2-KC2+KC2=OM2=AB2/4 không đổi

24 tháng 6 2022

? bro

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

29 tháng 10 2018

A=4cm,B=6,C=10

Nếu A=4,B=6,C=10 thì A+B+C=4+6+10=20

Bạn tham khảo :

Violympic toán 9

11 tháng 6 2016

\(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}=\frac{x^{2n}+1}{x^{2n}-1}\)

Xét \(y^2+1=\left(\frac{x^{2n}+1}{x^{2n}-1}\right)^2+1=\frac{x^{4n}+2x^{2n}+1}{x^{4n}-2x^{2n}+1}+1=\frac{2\left(x^{4n}+2\right)}{x^{4n}-2x^{2n}+1}\)

\(\Rightarrow\frac{y^2+1}{2y}=\frac{2\left(x^{4n}+1\right)}{x^{4n}-2x^{2n}+1}.\frac{x^{2n}-1}{2\left(x^{2n}+1\right)}=\frac{x^{4n}+1}{\left(x^{2n}-1\right)^2}.\frac{x^{2n}-1}{x^{2n}+1}=\frac{x^{4n}+1}{x^{4n}-1}=\frac{\frac{x^{4n}+1}{x^{2n}}}{\frac{x^{4n}-1}{x^{2n}}}=\frac{x^{2n}+\frac{1}{x^{2n}}}{x^{2n}-\frac{1}{x^{2n}}}\)

11 tháng 6 2016

Bạn thêm điều kiện x khác 0 nữa nhé

27 tháng 6 2018

Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)

Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2

+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)

\(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

27 tháng 6 2018

Cmtt

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6