K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)

\(a-b+c-d=a+c-b-d\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)

\(a-b-c+d=a+d-b-c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)

\(a-b+c=a-b+c=a+c-b\)

\(\Rightarrowđpcm\)

d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)

\(a-b-b-c+c-a-a+b+c=-a-b+c\)

\(-a-b+c=-a-b+c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)

\(a-b-c+b+c-1=b-c+6-7+a-b+c\)

\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

7 tháng 2 2017

\(a\)) \(Ta\) \(có\)\(:\) \(\left(a-b\right)-\left(c-d\right)=a-b-c+d\)

\(=a+\left(-b\right)+\left(-c\right)+d\)

\(=\left(a+d\right)+\left[\left(-b\right)+\left(-c\right)\right]\)

\(=\left(a+d\right)+\left[-\left(b+c\right)\right]\)

\(=\left(a+d\right)-\left(b+c\right)\)

232 theo mk là thế 

1 tháng 1 2016

Ta có

\(\left(a-b\right)+\left(c-d\right)=a-b+c-d=\left(a+c\right)-\left(b+d\right)\)

b

\(\left(a-b\right)-\left(c-d\right)=a-b-c+d=\left(a+d\right)-\left(b+c\right)\)

c,

\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=\left(b-c+6\right)-\left(7-a+b\right)+c\)Nếu thấy bài làm của mình đúng thì tick nha ban.Nhân dịp đầu xuân năm mới mình chúc bạn vui vẻ mạnh khoẻ nha.

25 tháng 1 2017

Mik ko viết lại đề:

a, = a - b + c - a - c = ( a- a) + ( c- c) + b = b

b, = a + b - b + a + c = ( a + a) + ( b - b) + c = 2a + c

c, = -a -b + c + a - b -c = ( -a + a) + ( -b -b) + ( c - c) = - 2b

d, = ab + ac - ab - ad  = ac - ad = a(c - d)

e, = ab - ac + ad + ac = ab + ad = a( b + d)

Nguyen Thu Ha học giỏi thế

Làm đúng rồi

Ủng hộ nha

6 tháng 3 2016

a)

-(-a+b+c)+(b+c-1)=a-b-c+b+c-1=a-1

(b-c+6)-(7-a+b)+c=b-c+6-7+a-b+c=a-1

suy ra -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c

6 tháng 3 2016

b)A+B=a+b-5-b-c+1=a-c-4

C-D=(b-c-4)-(b-a)=b-c-4-b+a=a-c-4

suy ra A+B=C-D

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

C1 

B = (a + b - c)-(b + c - a)-(a - b - c)

   =a+b-c-b-c+a-a+b+c

   =a+b-c

C2

ta có:

  a)  (a-b)+(c-d)

 =a-b+c-d     

=a+c-b-d

=(a+c)-(b+d)

vậy .....

b)ta có:

      (a-b)-(c-d)

=a-b-c+d

=a+d-b-c

=a+d-b-c

=(a+d)-(b+c)