K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Ta có : \(ax^2+bx+c=0\)có hai nghiệm trái dấu khi và chỉ khi \(\frac{c}{a}< 0\)

Áp dụng vào phương trình \(x^2+x-1=0\)có : \(-\frac{1}{1}< 0\)

=> phương trình \(x^2+x-1=0\)có 2 nghiệm trái dấu ( điều phải chứng minh )

18 tháng 10 2020

Dùng công thức nghiệm tìm được hai nghiệm \(x_1=\frac{-1-\sqrt{5}}{2}< 0\)và \(x_2=\frac{-1+\sqrt{5}}{2}>0\)

Vậy phương trình  x2 + x - 1 = 0 có 2 nghiệm trái dấu

\(D=\sqrt{x_1^8+10x_1+13}+x_1=\left[\sqrt{x_1^8+10x_1+13}+\left(x_1-5\right)\right]+5\)\(=\frac{x_1^8+10x_1+13-x_1^2+10x_1-25}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5\)\(=\frac{x_1^8-x_1^2+20x_1-12}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=\frac{\left(x_1^2+x_1-1\right)\left(x_1^6-x_1^5+2x_1^4-3x_1^3+5x_1^2-8x_1+12\right)}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=5\)(Do x1 là nghiệm của phương trình x2 + x - 1 = 0 nên \(x_1^2+x_1-1=0\))

Câu 1:Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)a) Rút gọn P.b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.Câu 2: 1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3a) Chứng minh rằng: x1 + x2+ x3=0; x1x2 + x2x3 + x3x1 = -3 và x1x2x3=1b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?2. Giải phương...
Đọc tiếp

Câu 1:

Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)

a) Rút gọn P.

b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.

Câu 2: 

1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3

a) Chứng minh rằng: x+ x2+ x3=0; x1x+ x2x3 + x3x1 = -3 và x1x2x3=1

b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?

2. Giải phương trình: \(\left(x^2-3x+2\right)\left(x^2+9x+20\right)=112\)

Bài 3: Cho tam giác ABC và điểm M di động trên đoạn BC. Gọi I là điểm bất kì trên đoạn AM và E là giao điểm của BI với cạnh AC.

a) Khi M và I thỏa mãn MC=2MB và AI=2IM. Tính tỉ số độ dài 2 đoạn AE và EC.

b) Khi M là trung điểm của BC, gọi F là giao điểm của CI với cạnh AB. Chứng minh rằng EF // BC ? 

0
20 tháng 8 2018

em này là xàm

1 tháng 2 2016

tui chưa học tới

1 tháng 2 2016

chưa học tới

18 tháng 10 2020

Sử dụng delta thôi!

Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt

Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)

Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)

\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)

\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)

Thay vào ta được:

\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)

\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)

\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)

\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Vậy \(B=\sqrt{2}\)