Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0
Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0
⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0
⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12
Theo Vi-et ta có:
⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12
Dấu "=" xảy ra ⇔m=2 (thỏa mãn).
Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.
t(t+1)=6
=> t=2;-3
+ x2 +x = 2 => x = 1 ; -2 => S =5
+ x2 + x = -3 => loại
a. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+7-1-2.2=8\ne0\)
\(\Rightarrow x_0=2\) không phải là nghiệm của pt
b. Thay \(x_0=-2\) vào phương trình, ta được:
\(\left(-2\right)^2-3.\left(-2\right)-10=0\)
\(\Rightarrow x_0=-2\) là nghiệm của pt
c. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+4-2.2+2=0\)
\(\Rightarrow x_0=2\) là nghiệm của pt
d. Thay \(x_0=-1\) vào phương trình, ta được:
\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
e. Thay \(x_0=-1\) vào phương trình, ta được:
\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
f. Thay \(x_0=5\) vào phương trình, ta được:
\(4.5^2-3.5-2.5+1=76\ne0\)
\(\Rightarrow x_0=5\) không là nghiệm của pt
Ta có : \(ax^2+bx+c=0\)có hai nghiệm trái dấu khi và chỉ khi \(\frac{c}{a}< 0\)
Áp dụng vào phương trình \(x^2+x-1=0\)có : \(-\frac{1}{1}< 0\)
=> phương trình \(x^2+x-1=0\)có 2 nghiệm trái dấu ( điều phải chứng minh )
Dùng công thức nghiệm tìm được hai nghiệm \(x_1=\frac{-1-\sqrt{5}}{2}< 0\)và \(x_2=\frac{-1+\sqrt{5}}{2}>0\)
Vậy phương trình x2 + x - 1 = 0 có 2 nghiệm trái dấu
\(D=\sqrt{x_1^8+10x_1+13}+x_1=\left[\sqrt{x_1^8+10x_1+13}+\left(x_1-5\right)\right]+5\)\(=\frac{x_1^8+10x_1+13-x_1^2+10x_1-25}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5\)\(=\frac{x_1^8-x_1^2+20x_1-12}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=\frac{\left(x_1^2+x_1-1\right)\left(x_1^6-x_1^5+2x_1^4-3x_1^3+5x_1^2-8x_1+12\right)}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=5\)(Do x1 là nghiệm của phương trình x2 + x - 1 = 0 nên \(x_1^2+x_1-1=0\))
ta có: x^2+y^2+z^2=xy+3y+2z-4 => x^2+y^2+z^2-xy-3y-2z+4=0
=>x^2-xy+y^2/4 +3y^2/4 -3y+3+z^2-2x+1=0 0
=>(x- y/2)^2 + 3(y/2-1)^2 +(z-1)^2 =0 =>y/2 -1=0 =>y/2= 1 =>y= 2
=>x - y/2=0 => x -1 =0 => x=1
=>z-1=0 => z=1
từ đó ta có x+y+z=4
tui chưa học tới
chưa học tới