Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)
(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)
\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2
Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2
+ Nếu a chia hết cho 3 thì bài toán đúng
+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3
+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3
=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3
Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6
xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!
4n+2 -3n+2 - 4n - 3n
= 4n+2 - 4n - 3n+2 - 3n
= 4n ( 42 - 1 ) - 3n ( 32 + 1 )
= 4n .15 - 3n.10
= 4n-1.4.15 - 3n-1.3.10
= 4n-1.60 - 3n-1.30
= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )
\(n^4+7\left(7+2n^2\right)\)
\(=n^4+14n^2+49\)
\(=\left(n^2\right)^2+2.7.n^2+7^2\)
\(=\left(n^2+7\right)^2\)
Vì n là số nguyên nẻ nên n có dạng 2k + 1 với k là số nguyên
\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)
\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)
\(=\left[4k\left(k+1\right)+8\right]^2\)
Ta thấy \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)
\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮64\forall k\in Z\)
Hay \(n^4+7\left(7+2n^2\right)⋮64\forall n\)là số nguyên lae (đpcm)