K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

-Đề sai rồi bạn ạ.

25 tháng 3 2022

ko âm là lớn hơn hoặc = 0 đó bạn 

20 tháng 4 2018

\(\ge\)0 nhá

22 tháng 4 2018

Ta có: \(x-y+z=0\)
    \(\Rightarrow\left(x-y+z\right)^2=0 \)
  \(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
   \(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
   \(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
  \(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
   \(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
   \(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
   Vậy: \(xy+yz-xz\ge0\)
   

7 tháng 1 2017

x2=yz  => \(\frac{x}{y}=\frac{z}{x}\)

\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

áp dụng ... ta có

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

\(\frac{x}{y}=1\Rightarrow x=y\)

\(\frac{z}{x}=1\Rightarrow z=x\)

=>x=y=z

24 tháng 5 2020

Ta có x2=yz nên x/y=z/x(1)

y2=xz nên x/y=y/z(2)

z2=xy nên z/x=y/z(3)

Từ 1,2,3 suy ra x/y=z/x=y/z(4)

áp dụng t/c dãy tỉ số bằng nhau vào 4 có

x/y=z/x=y/z=x+y+z/x+y+z

vì x, y,z khác 0 nên x+y+z Khác 0

suy ra x+y+z/z+x+y=1

suy ra x/y=z/x=y/z=1

suy ra x=y; x=z; y=z

24 tháng 5 2020

C2 :

Từ x2=yzxz=yx(1)

Từ y2=xzyx=zy(2)

Từ z2=xyzy=xz(3)

Từ (1) , (2) và (3) xz=yx=zy

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

xz=yx=zy=x+y+zz+x+y=1

Khi đó : xz=1x=z((

yx=1y=x

zy=1z=y

T

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:

$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$

$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$

Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$ 

Ta có đpcm.

10 tháng 11 2016

Ta có : x - y = 0 => x = y

Vì x = y => xy = x2 = y2 ≥ 0

=> xy ≥ 0 ( đpcm )

11 tháng 11 2016

câu 2 khó rứa 

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

24 tháng 9 2016

jhgffhg567675i76

28 tháng 1 2016

 Ta có :x2 = yz , y2 = xz , z2 = xy

=> x2.y2.z2=yz.xz.xy

=>x2.y2.z2=y2.z2.x2

=>xyz=yxz

=> x=y=z

9 tháng 11 2016

vãi bạn xyz=yxz đã => x=y=z rồi