K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

2n+1=a^2 (1), 3n+1=b^2 (2)

Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn

suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1

(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)

suy ra 5n chia hết cho 8, suy ra n chia hết cho 8

Ta cần chứng minh n chia hết cho 5

Số chính phương có các tận cùng là 0,1,4,5,6,9

Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5

Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)

13 tháng 3 2021
Chịu lớp 8 thì thôi
13 tháng 7 2019

#)Giải :

a)Theo đầu bài, ta có : \(n=a^2+b^2\)

\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)

\(\Rightarrowđpcm\)

b)Theo đầu bài, ta có : \(2n=a^2+b^2\)

\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)

\(\Rightarrowđpcm\)

6 tháng 7 2016

Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)

Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)

=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 =>  \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)

Vậy n chia hết cho 8

Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)

Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1

=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)

\(\Rightarrow b^2-a^2\)chia hết cho 3

Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3

Như vậy  \(n⋮3,n⋮8\) mà (3,8) = 1 

=> \(n⋮24\)

7 tháng 7 2016

bằng 1 nhé100% là đúng

k cho mình nha 

22 tháng 2 2019

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath