K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)

\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

=>đpcm

15 tháng 10 2015

Có a2 = bc 

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> Đpcm

30 tháng 9 2018

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

25 tháng 7 2016

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

4 tháng 6 2015

a2=bc=>a.a=bc=>\(\frac{a}{b}=\frac{c}{a}\)

Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow a=bk;c=ak\)

=>\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

\(\frac{c+a}{c-a}=\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

Vậy với a2=bc thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(=\frac{k+1}{k-1}\right)\)

 

12 tháng 12 2017

Ta có : a2 = bc \(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)\(\Rightarrow\)\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)=>(a+b)(c-a)=(c+a)(a-b)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=>đpcm

8 tháng 12 2015

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\).

1 tháng 10 2017

Ta có : \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

    \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Vậy nếu \(a^2=bc\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

1 tháng 10 2017

Ta có: \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{a-b}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Vậy: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)