K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 2 2022

ta có :

\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)

\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)

\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)

Điều này đúng do giả thuyết \(a\ge b,x\ge y\)

25 tháng 7 2022

Ta có \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by 2a+b2x+ y

\Leftrightarrow 2(ax+by) \ge (a + b)(x + y)2(ax+by)  (a+b)(x+y)

\Leftrightarrow 2(ax+by) \ge ax + ay + bx + by2(ax+by) ax+ay+bx+by

\Leftrightarrow ax + by - ay - bx \ge 0ax+byaybx 0

\Leftrightarrow (a - b)(x - y) \ge 0(ab)(xy)0 (luôn đúng vì giả thiết a \ge bab và x \ge yxy).

Vậy nếu a \ge babx \ge yxy thì \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by 2a+b2x+ y.

30 tháng 11 2017

a) BĐT \(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\ge0\)

suy ra sai đề

b) BĐT \(\Leftrightarrow\dfrac{\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+xz\right)}{xyz}\ge0\) ( đúng vì \(x\ge y\ge z>0\))

2 tháng 10 2021

Áp dụng BĐT cosi cho 3 số x;y;z dương

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)

Cộng vế theo vế 

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)

\(\LeftrightarrowĐpcm\)

2 tháng 10 2021

Cám ơn thầy ạ, tuy nhiên hình như là có sự nhầm lẫn rồi thầy ạ, bài này thầy xem lại  đề bài giúp em với ạ

5 tháng 2 2022

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

6 tháng 5 2022

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

6 tháng 5 2022

Mà câu này làm được rồi, giúp được câu kia không

6 tháng 1 2018

Trước tiên ta cần chứng minh:

\(x^4+y^4\ge x^3y+xy^3\left(\forall x;y\right)\)(1)

Ở BĐT này có nhiều cách giải nhưng em giải cách thông thường thôi

BĐT(1) tương đương \(\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\)\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\)\(\ge0\left(\forall x;y\right)\)(tự cm nhé)

\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}.\dfrac{x^3+y^3}{2}\Leftrightarrow\dfrac{2\left(x^4+y^4\right)}{4}\ge\dfrac{(x^4+y^4)+(x^3y+xy^3)}{4}\)( luôn đúng như trên)

\(\Rightarrowđpcm\)

7 tháng 1 2018

==" bữa h mày hok mấy abif như thế này hả ???