K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G

=> G là trong tâm của tam giác

-> GB=BM ; GC = CN

mà BM=CN (gt) nên GB = GC

=> tam giác GBC cân tại G

Do đó tam giác BCN=tam giác CBM vì:

BC là cạnh chung

CN = BM (gt)

=> tam giác ABC cân tại A

Gọi tam giác đề bài cho là ΔABC có BD,CE là các trung tuyến, BD=CE. Cần chứng minh ΔABC cân tại A

Gọi G là giao điểm của BD và CE

Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GB=2/3BD và GC=2/3CE

mà BD=CE

nên GB=GC

=>góc GBC=góc GCB

Xét ΔDBC và ΔECB có

BC chung

góc DBC=góc ECB

DB=EC

=>ΔDBC=ΔECB

=>góc DCB=góc EBC

=>ΔABC cân tại A

11 tháng 5 2017

Gọi Δ ABC có trung tuyến BM = CN, G là trọng tâm Δ (giao điểm các trung tuyến)
Ta có :
GB = 2/3.BM
GC = 2/3.CN
Mà BM = CN => GB = GC
=> Δ BGC cân tại G
=> ∠ MBC = ∠ NCB
Xét Δ BMC và Δ CNB :
BM = CN
∠ MBC = ∠ NCB
BC là cạnh chung
=> Δ BMC = Δ CNB (c - g - c)
=> ∠ MCB = ∠ NBC
hay ∠ ACB = ∠ ABC
=> Δ ABC cân tại A (đpcm)

1 tháng 12 2018

Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.

Gọi I là giao điểm BD và CE, ta có:

BI = 2/3 BD (tính chất đường trung tuyến) (1)

CI = 2/3 CE (tính chất đường trung tuyến) (2)

Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI

Do BD = CE suy ra: BI + ID = CI + IE

Mà BI = CI ( chứng minh trên) nên : ID = IE

Xét ΔBIE và ΔCID, ta có:

BI = CI (chứng minh trên)

∠(BIE) = ∠(CID) (đối đỉnh)

IE = ID (chứng minh trên)

Suy ra: ΔBIE = ΔCID (c.g.c)

Suy ra: BE = CD (hai cạnh tương ứng) (3)

Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)

CD = 1/2 AC (vì D trung điểm AC) (5)

Từ (3), (4) và (5) suy ra: AB = AC.

Vậy tam giác ABC cân tại A.

1 tháng 5 2019
 

giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC

xét 2 tam giác: NBG và MCG có: 

góc NGB = góc MGC ( vì 2 góc đối đỉnh )        (1)

vì BM, CN là trung tuyến      (gt)

=> BG = 2/3 BM, CG = 2/3 CN

mà BM = CN (gt)    => BG = CG                    (2)

=> NG = 1/3 NC, MG = 1/3 MB

=> NG = MG                                                 (3)

từ (1) , (2), (3)   => tam giác NGB = tam giác MGC (c.g.c)

=> NB = MC  (2 cạnh tương ứng)

=> AB = AC   (vì NB = 1/2 AB, MC = 1/2 AC)

=> tam giác ABC cân tại A ( đpcm)

 
1 tháng 5 2019

E I I A B C

Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.

Gọi I là giao điểm BD và CE, ta có:

BI = 2/3 BD (tính chất đường trung tuyến) (1)

CI = 2/3 CE (tính chất đường trung tuyến) (2)

Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI

Suy ra: BI + ID = CI + IE ⇒ ID = IE

Xét ΔBIE và ΔCID, ta có:

BI = CI (chứng minh trên)

∠(BIE) = ∠(CID) (đối đỉnh)

IE = ID (chứng minh trên)

Suy ra: ΔBIE = ΔCID (c.g.c)

Suy ra: BE = CD (hai cạnh tương ứng) (3)

Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)

CD = 1/2 AC (vì D trung điểm AB) (5)

Từ (3), (4) và (5) suy ra: AB = CD.

Vậy tam giác ABC cân tại A.

3 tháng 4 2016

giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G

=> G là trong tâm của tam giác

-> GB=BM ; GC = CN

mà BM=CN (gt) nên GB = GC

=> tam giác GBC cân tại G

Do đó tam giác BCN=tam giác CBM vì:

BC là cạnh chung

CN = BM (gt)

=> tam giác ABC cân tại A

3 tháng 4 2016

xét tam giác ABD và ACE :

E=D (=90o)

CE=BD (gt)

A:chung 

suy ra tam giác ABD =ACE(ch_gn) 

suy ra góc B=C(t/ư)

xét tam giác EIB&DIC:

E=D(=90o)

IE=ID

B=C

suy ra tam giácEIB=DIC

suy ra IB=IC

suy ra tam giác BIC cân tại I, suy ra B=C

suy ra:đpcm

19 tháng 9 2023

Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)

\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB

Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)

Do đó, AM = MC = NA = NB

Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:

AN = AM

\(\widehat A\) chung

AC = AB

\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)

\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)

Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)