Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: n+1=a2
2n+1=b2
Vì 2n+1 lẻ
=> b2:8 dư 1
=> 2n \(⋮\)8
=> n chẵn
=> a2:8 dư 1
=> n
GS: n+1= a2
2n+1=b2
=>2n chia hết cho 8
=> n chẵn
=> a2 chia 8 dư 1
=> n chia hết cho 8
a2+b2=3n+2
Vì số chính phương chia 3 dư 0 hoặc 1
Mà 3n+2 chia 3 dư 2
=> b2 và a2 chia 3 dư 1
=> n chia hết cho 3
Mà [3,8]=1=> n chia hết cho 24
Đặt B = 10n + 10n-1 + ...+ 10 + 1
=> 10.B = 10n+1 + 10n + ...+ 102 + 10
=> 10B - B = 10n+1 -1
=> 9B = 10n+1 - 1
Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9
9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4
= (10n+1 + 2)2
=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)
Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương
=> A là số chính phương
Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)
Từ đó suy ra:
A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)
Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)
=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)
= \(\frac{B^2+4B+4}{9}\)
= \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)
= 333...342
Vậy A là số chính phương. (1)
Gỉa sử A=m3, m thuộc N
=> 333...34{n số 3} = m3
=> m3 chia hết cho 2
=> m chia hết cho 2
=> m3 chia hết cho 8 Hay (2.1666..67{n-1 số 6} )2 chia hết cho 8
=>4.1666..672{n-1 số 6} chia hết cho 8
=>1666..672 chia hết cho 2 (Vô Lý)
Vậy A ko thể là lập phương của 1 số tự nhiên. (2)
Từ (1) và (2) => ĐPCM
A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!
Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3
=> A không thể là số chính phương
làm ko bt đúng hay sai:
giả sử 3^n+4 là scp=>3^n+4=a^2
mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ
=>a có dạng 4k+1 hoặc a có dạng 4k+3
+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1
+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1
vậy a^2=8m+1(1)
mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)
nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)
vậy 3^n+4 ko thể là scp
vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ
ta thấy n^2<n(n+1)<n(n+2)<(n+1)^2
mà n^2 và(n+1)^2 là 2 scp liên tiếp, mà giữa 2 scp liên tiếp ko có sô chính phương nào nên n(n+1) và n(n+2) ko là scp
tick nha