Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)
\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)
\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
Bạn làm tương tự nhé
1, \(A=4x^4+4x+2=4x^4+4x+1+1\)
\(=\left(2x+1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow\)A là số dương
2, \(B=4x^2+3x+2\)
\(=4\left(x^2+\dfrac{3}{8}x.2+\dfrac{9}{64}+\dfrac{23}{64}\right)\)
\(=4\left[\left(x+\dfrac{3}{8}\right)^2+\dfrac{23}{64}\right]\)
\(=4\left(x+\dfrac{3}{8}\right)^2+\dfrac{23}{16}\ge\dfrac{23}{16}>0\)
\(\Rightarrowđpcm\)
3, \(C=2x^2+3x+4=2\left(x^2+\dfrac{3}{4}x.2+\dfrac{9}{16}+\dfrac{23}{16}\right)\)
\(=2\left[\left(x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\right]\)
\(=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}>0\forall x\)
\(\Rightarrowđpcm\)
A = \(4x^2+4x+2\)
A = \(4x^2+4x+1+1\)
A = \(\left(2x+1\right)^2+1\ge1\) với mọi x
Vậy biểu thức trên có giá trị dương với mọi x
B = \(4x^2+3x+2\)
B = \(4x^2+2x.2.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)
B = \(\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\) \(\ge\) \(\dfrac{23}{16}\) với mọi x
Vậy biểu thức trên có giá trị dương với mọi x
C = \(2x^2+3x+4\)
C = \(2.\left(x^2+\dfrac{3}{2}x+2\right)\)
C = \(2.\left(x^2+2x.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\right)\)
C = \(2.\left[\left(x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\right]\)
C = \(2.\left(x+\dfrac{3}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\) với mọi x
Vậy biểu thức trên có giá trị dương với mọi x
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
https://olm.vn/hoi-dap/question/118420.html
Bạn có thể tham khảo cách làm ở link này nhé!
a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
c) x4 - 3x2 + 9 (*)
Đặt t = x2
(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )
d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1
= [ ( x + y )2 - 2( x + y ) + 12 ] + 1
= ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)
d) \(x^2+y^2-2x-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)
e) \(x^2+y^2-2x-2y+2xy+2\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)
\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)
a, \(x^2+4x+6\)
\(=x^2+2x+2x+4+2\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)
\(=\left(x+2\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)
Vậy......
b, \(x^2+x+1\)
\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy......
c, \(2x^2+4x+3\)
\(=2x^2+2x+2x+2+1\)
\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)
\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)
\(=2\left(x+1\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy......
Mấy câu còn lại làm tương tự!
Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "
Chúc bạn học tốt!!!
1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)
...
2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
...
3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)
...
\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)
...
\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)
...
\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)