K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

Phân tích thành nhân tử:

a5b-ab5=a5b-ab-ab2+ab=ab(a4-1)-ab(b2-1)=ab(a2-1)(a2+1)-ab(b2-1)(b2+1)=ab(a-1)(a+1)(a2+1)-ab(b-1)(b+1)(b2+1)=ab(a-1)(a+1)(a2-4+5)-ab(b-1)(b+1)(b2-4+5)=ab(a-1)(a+1)(a-2)(a+2)+5ab(a-1)(a+1)-ab(b-1)(b+1)(b-2)(b+2)-5ab(b-1)(b+1)

Ta Thấy:(a-2)(a-1)a(a+1)(a+2) là 5 số TN liên tiếp

=>(a-2)(a-1)ab(a+1)(a+2)chia hết cho 30(trong 5 số TN liên tiếp có 1 số chia hết cho 2 cho 3 cho 5)

TT=>a(a+1)(a-1) chia hết cho 6=>5ab(a-1)(a+1)chia hết cho 30

cmtt =>đpcm

25 tháng 11 2017

tại sao bên kia là ab^5 mà bên này lại ab^2

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

1/

Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn

$\Rightarrow ab(a+b)\vdots 2$

Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn

$\Rightarrow ab(a+b)\vdots 2$

Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.

 

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

2/

$n^2+n-1=n(n+1)-1$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

Mà $1\not\vdots 2$

$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$

21 tháng 5 2016

Ta có \(A=a^5b-ab^5=a^5b-ab-ab^5+ab\) 

 \(A=\left(a^5b-ab\right)-\left(ab^5-ab\right)\)

\(A=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta có \(m^5-m=m\left(m^4-1\right)=m\left(m^2-1\right)\left(m^2+1\right)\)

\(=m\left(m+1\right)\left(m-1\right)\left(m^2-4+5\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m^2-4\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)-5\left(m-1\right)m\left(m+1\right)\)

Vì \(m-2;m-1;m;m+1;m+2\) là 5 số nguyên liên tiếp nên chia hết cho 2 ; 3 ; 5

Mà \(\left(2;3;5\right)=1\)

\(\Rightarrow\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)\) chia hết cho \(2\times3\times5=30\)

\(\Rightarrow m^5-m\) chia hết cho 30 

\(\Rightarrow a^5-a\) và \(b^5-b\) Chia hết cho 30

\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)\) chia hết cho 30 

\(\Rightarrow A=a^5b-ab^5\) chia hết cho 30 

Vậy A chia hết cho 30

15 tháng 4 2015

4a2+3ab-11bchia hết cho 5  \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5

                                             a+ 2ab + b2 chia hết cho 5

                                            ( a + b )2 chia hết cho 5

                                             a + b chia hết cho 5  (vì 5 là số nguyên tố)

                                             a4 - b= a+ b (a + b) (a - b) chia hết cho 5

DD
3 tháng 8 2021

4a2+3ab-11bchia hết cho 5 

\(\left(4a^2+3ab-11b^2\right)⋮5\)

\(\Leftrightarrow5\left(a^2+ab-2b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)⋮5\)

\(\Leftrightarrow a+b⋮5\)

\(\Rightarrow a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)⋮5\)

8 tháng 1 2018

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10

Ta thấy : ( a + 10 ) - a = 10 .

Mà 10 lại chia hết cho 10

Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn ) 

b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99

Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100

             ( 50a + 48 ) + ( 50a + 52 ) = 100a + 100

             ( 50a + 1 ) + ( 50a + 49 ) = 100a + 50

Mà 50 và 100  thì lại chia hết cho 50

Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

11 tháng 8 2018

\(A=2+2^2+2^3+...+2^{60}\)

    \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

      \(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy....

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)

    \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

     \(=30.\left(1+5^2+...+5^6\right)⋮30\)

11 tháng 8 2018

Bài 1 bạn kia giải rồi 

2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d

=> (6n+15)-(6n+14) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* nên d = 1

=> ƯCLN(2n+5;3n+7) = 1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

3. Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x - 4y chia hết cho 5

=> ĐPCM