K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

Phân tích thành nhân tử:

a5b-ab5=a5b-ab-ab2+ab=ab(a4-1)-ab(b2-1)=ab(a2-1)(a2+1)-ab(b2-1)(b2+1)=ab(a-1)(a+1)(a2+1)-ab(b-1)(b+1)(b2+1)=ab(a-1)(a+1)(a2-4+5)-ab(b-1)(b+1)(b2-4+5)=ab(a-1)(a+1)(a-2)(a+2)+5ab(a-1)(a+1)-ab(b-1)(b+1)(b-2)(b+2)-5ab(b-1)(b+1)

Ta Thấy:(a-2)(a-1)a(a+1)(a+2) là 5 số TN liên tiếp

=>(a-2)(a-1)ab(a+1)(a+2)chia hết cho 30(trong 5 số TN liên tiếp có 1 số chia hết cho 2 cho 3 cho 5)

TT=>a(a+1)(a-1) chia hết cho 6=>5ab(a-1)(a+1)chia hết cho 30

cmtt =>đpcm

25 tháng 11 2017

tại sao bên kia là ab^5 mà bên này lại ab^2

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

1/

Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn

$\Rightarrow ab(a+b)\vdots 2$

Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn

$\Rightarrow ab(a+b)\vdots 2$

Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.

 

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

2/

$n^2+n-1=n(n+1)-1$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

Mà $1\not\vdots 2$

$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$

23 tháng 8 2015

a, Ta có:

Đặt a=2k, b=2k+1

Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2

Đặt a=2k+1; b=2k

Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2

Đặt a=2k;b=2k

Suy ra ab(a+b)=2k.2k.4k chia hết cho 2

Đặt a=2k+1;b=2k+1

Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2

Vậy ab(a+b) chia hết cho 2 với mọi a;b

Câu khác tương tự

23 tháng 8 2015

câu c)  ab+ba=10a+b+10b+a

                    =11a+11b

                    =11(a+b)

vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11

       vậy ab+ ba chia hết cho 11

8 tháng 1 2018

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10

Ta thấy : ( a + 10 ) - a = 10 .

Mà 10 lại chia hết cho 10

Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn ) 

b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99

Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100

             ( 50a + 48 ) + ( 50a + 52 ) = 100a + 100

             ( 50a + 1 ) + ( 50a + 49 ) = 100a + 50

Mà 50 và 100  thì lại chia hết cho 50

Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

24 tháng 1 2019

ngu rồi bạn ạ

24 tháng 1 2019

KQ là tập hợp rỗng (vô lí)

Tự CM nha

Mik ko rảnh

Sorry

21 tháng 5 2016

Ta có \(A=a^5b-ab^5=a^5b-ab-ab^5+ab\) 

 \(A=\left(a^5b-ab\right)-\left(ab^5-ab\right)\)

\(A=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta có \(m^5-m=m\left(m^4-1\right)=m\left(m^2-1\right)\left(m^2+1\right)\)

\(=m\left(m+1\right)\left(m-1\right)\left(m^2-4+5\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m^2-4\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)-5\left(m-1\right)m\left(m+1\right)\)

Vì \(m-2;m-1;m;m+1;m+2\) là 5 số nguyên liên tiếp nên chia hết cho 2 ; 3 ; 5

Mà \(\left(2;3;5\right)=1\)

\(\Rightarrow\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)\) chia hết cho \(2\times3\times5=30\)

\(\Rightarrow m^5-m\) chia hết cho 30 

\(\Rightarrow a^5-a\) và \(b^5-b\) Chia hết cho 30

\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)\) chia hết cho 30 

\(\Rightarrow A=a^5b-ab^5\) chia hết cho 30 

Vậy A chia hết cho 30

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

15 tháng 4 2015

4a2+3ab-11bchia hết cho 5  \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5

                                             a+ 2ab + b2 chia hết cho 5

                                            ( a + b )2 chia hết cho 5

                                             a + b chia hết cho 5  (vì 5 là số nguyên tố)

                                             a4 - b= a+ b (a + b) (a - b) chia hết cho 5