Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{6}.3+\dfrac{1}{9}.3+\dfrac{1}{12}.3+\dfrac{1}{15}.3\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
\(\Rightarrow S< 2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)\)
\(\Rightarrow S< 2\left[\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)\right]\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S< 2.\dfrac{3}{2}\)
\(\Rightarrow S< 3\left(1\right)\)
Lại có: \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{8}.4+\dfrac{1}{12}.4+\dfrac{1}{16}.4\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S>2\)
Từ (1) và (2) suy ra \(2< S< 3\)
⇒ S không phải 1 số nguyên
Vậy...
Ta có 1/2x3<1/2^2<1/1x2;1/3x4<1/3^2<1/2x3;
.......
1/45x46<1/45^2<1/44x45
=>1/2x3+1/3x4+...+1/45x46<1/2^2+1/3^2+...+1/45^2<1/1x2+1/2x3+...+1/44x45
=>1/2-1/46<1/2^2+1/3^2+...+1/45^2<1-1/45
=>11/23<1/2^2+1/3^2+...+1/45^2<44/45
Mà11/23>0;44/45<1
=>0<1/2^2+1/3^2+...+1/45^2<1
Vậy 1/2^2+1/3^2+...+1/45^2 không phải là số nguyên
1.
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
2.
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)
Ta có:
\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)
\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)
\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)
\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)
Lại có:
\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)
\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)
\(\Rightarrow S< 2\) (2)
Từ (1), (2) \(\Rightarrow1< S< 2\)
\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên
2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :
\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)
\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)