Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x^2+6x+10=x^2+6x+9+1=\left(x^2+6x+9\right)+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\)nên \(\left(x+3\right)^2+1\ge1\)
Vì \(\left(x+3\right)^2+1\ge1\)nên không có nghiệm
Vậy \(x^2+6x+10\)không có nghiệm
\(x^2+6x+10\)
\(=x^2+3x+3x+3.3+1\)
\(=x\left(3+x\right)+3\left(3+x\right)+1\)
\(=\left(3+x\right)\left(3+x\right)+1\)
\(=\left(3x+1\right)^2+1\)
\(\text{Vi}:\left(3+x\right)^2\ge0\)
\(\Rightarrow\left(3+x\right)^2+x>1\)
=> Đa thức ko có nghiệm
\(-8^4+6x^3-4x^2+2x-1\)
Giả sử \(x\) là nghiệm nguyên
Trường hợp 1 (1)
\(-8^4+6x^3-4x^2+2x-1 \vdots x\)
\(=> 1 \vdots x => x= -1;1\)
Thay \(x\) bằng 1, -1. Ta thấy giá trị của biểu thức sau khi thay khác 0 nên 1 và -1 không phải là nghiệm
Trường hợp 2 : (2)
\(x=0\). Thay x thành 0 cho ra kết quả biểu thức khác không nên 0 không phải nghiệm
=> Từ (1) và (2) suy ra đpcm
Bây giờ mình mới phát hiện là có phần bị khuất mất xin lỗi bạn
Trường hợp 1 (1)
Giả sử đa thức trên chia hết cho x
=> 1 chia hết cho x => x = 1 hoặc -1 (Lấy một ở cuối biểu thức nhe, lí do có phần suy ra này là bởi hiệu các số chia hết cho 1 số a bất kì sẽ chia hết cho số đó, áp dụng lại kiến thức học ở lớp 6)
Thay x thành 1 hoặc -1 ta được kết quả khác 0
Trường hợp 2 ...
\(f\left(x\right)=-8x^4+6x^3-4x^2+2x-1\)
\(=-5x^4-\left(3x^4-6x^3+3x^2\right)-\left(x^2-2x+1\right)\)
\(=-5x^4-3\left(x^2-x\right)^2-\left(x-1\right)^2\le0\)
Mà ta dễ thấy dấu = không xảy ra nên f(x) không có nghiệm thuộc Z
Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x
6x lớn hơn hoặc bằng 0 với mọi x
=> 3x^2+6x+11 >11
=> Đa thức A(x) k có nghiệm
Vậy đa thức A(x) k có nghiệm.
\(A\left(x\right)=3x^2+6x+11\)
\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)
\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)
\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)
Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2+2\ge2\)
=> \(2x^2+\left(x+3\right)^2+2\ne0\)
=> \(A\left(x\right)\ne0\)
Vậy đa thức \(A\left(x\right)\)không có nghiệm
Ta có: \(x^2-2x+2\) \(=x^2-2x+1+1\)
\(=\left(x^2-2x+1\right)+1\)
\(=\left(x-1\right)^2+1\)
Vì (x - 1)^2 \(\ge\) 0 nên (x - 1)^2 + 1 \(\ge\)1
Vậy đa thức trên ko có nghiệm
Ta có: x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1 \(\ge\)1
Vậy pt vô nghiệm
Ta có: \(x^2+4x+5=x^2+2x+2x+4+1\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)
\(=x\left(x+2\right)+2\left(x+2\right)+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\) nên \(\left(x+2\right)^2+1\ge1\)
Vậy đa thức trên ko có nghiệm
Chúc bạn học tốt !!!
xét 6x^2+2=0
=> 6x^2=-2
ta có:x^2>/0 với mọi x thuộc R mà 6x^2<0
=> 6x^2+2 vô nghiệm
delta á