Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{100}\right)< 5.1=5\)
Vậy S < 5 (đpcm)
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{101}{202}-\frac{2}{202}\right)\)
\(\Rightarrow S>5.\frac{99}{202}=\frac{495}{202}>2\)
Vậy S > 2 ( đpcm)
tiên đề Ơclit là toán lớp 7 bạn nhé, muốn làm bài nayf bạn phải dùng định ngĩa tính chất lý thuyết của toán số 7
gffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff