Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/22 + 5/32 + 5/42 +...+ 5/1002 < 5/1.2 + 5/2.3 +5/3.4 +...+ 5/99.100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 1/1.2 + 1/2.3 +1/3.4 +..+ 1/99.100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1 -1/2 +1/2 -1/3 +1/3-1/4 +...+ 1/99-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 100/100 -1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. 99/100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 99/20
mình chỉ giải tới đây thôi vì đã dễ rồi
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(S=5.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2.3},\frac{1}{3^2}>\frac{1}{3.4},\frac{1}{4^2}>\frac{1}{4.5},...,\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)>5.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow S>5.\frac{99}{202}\)
\(\Rightarrow S>\frac{495}{202}>\frac{404}{202}=2\)
\(\Rightarrow S>2\)
\(CM:S< 5\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},...,\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}\)
\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< 5.\frac{99}{100}\)
\(\Rightarrow S< \frac{495}{100}< \frac{500}{100}\)
\(\Rightarrow S< 5\)
1/5^2 < 1/4.5 =1/4 -1/5
1/6^2 < 1/5.6 = 1/5-1/6
1/7^2 < 1/6.7 = 1/6-1/7
...
1/100^2 < 1/99.100 = 1/99 - 1/100
Vậy 1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/5+1/5-1/6+...+ 1/98-1/99 +1/99 -1/100
1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/100
1/5^2+1/6^2+1/7^2+...+1/100^2 < 24/100 < 50/100 = 1/2
Hay 1/5^2+1/6^2+1/7^2+...+1/100^2<1/2.
\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
Ta có:
\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{12}=\frac{1}{3.4}\)
Tương tự đến hết thì:
\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{9900}=\frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
=>\(S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=> \(S< \frac{1}{2}\)
nhận xét
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
...........................................
\(\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{98\cdot99}=\frac{1}{98}-\frac{1}{99}\)
\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
ta có
S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=>S<\(\frac{1}{2}\)
Vậy S<\(\frac{1}{2}\)
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{100}\right)< 5.1=5\)
Vậy S < 5 (đpcm)
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{101}{202}-\frac{2}{202}\right)\)
\(\Rightarrow S>5.\frac{99}{202}=\frac{495}{202}>2\)
Vậy S > 2 ( đpcm)