Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
Ta có 3 +32 + \(3^3\)+ 34 + ....... + 32010
= ( 3 + 32 +33) + (34 +35 + 36) + ....... + (32008 + 32009 + 32010)
= 3 x (1 + 3 + 32) + 34 x (1 +3 +32) +........+ 32008 x (1 +3 +32)
= 3 x13 + 34 x 13 +......+32008 x 13
= 13 x (3 +34 +......+32008)
Vậy A chia hết cho 13 ( điều phải chứng minh )
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
bạn hãy tính số hạng để coi đủ nhóm hay ko rồi làm ! chúc bạn làm bài tốt !
Dãy trên có 2010 ( 2010 chia hết cho 3 ) lũy thừa nên có thể chia thành các cặp, mỗi cặp 3 lũy thừa
Có :
B = \(\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
B = \(3.13+...+3^{2008}.13\)
B = \(13.\left(3+...+3^{2008}\right)\)
=> B chia hết cho 13
Có :
B = \(3+3^2+3^3+3^4+...+3^{2010}\)
B = \(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
B = \(4.\left(3+3^3+...+3^{2009}\right)\)
=> B chia hết cho 4
D=5^1+5^2+5^3+...+5^2010
=(5^1+5^2)+(5^3+5^4)+...+(5^2009+5^2010)
=5(1+5)+5^3(1+5)+...+5^2009(1+5)
=(1+5)(5+5^3+...+5^2009)
=6(5+5^3+...+5^2009) chia hết cho 6
b) tự làm cách cũng tương tự vậy