Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^1+2^2+2^3+2^4+...\)\(+2^{2010}\)
a)
Chia hết cho 3 :
\(A=2^1+2^2+2^3+2^4+...\)\(+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\)\(\left(2^{2009}+2^{2010}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+\)\(2^{2009}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2009}.3\)
\(=3.\left(2+2^3+...+2^{2009}\right)\)\(⋮3\)
Các câu còn lại làm tương tự vậy bạn nhé nhưng riêng câu chia hết cho 7 và chia hết cho 13 thì gộp 3 số lại nhé vì dài quá nên mình làm thế thôi
A=(21+22+23+24+25+26) + . . . + (22005+22006+22007+22008+22009+22010)
A=2^1(1+2+22+23+24+25)+...................+22005(1+2+22+23+24+25)
A=2.63+......................+22005.63
A=63.(2+..............................+22005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
=6+2^3(1+2)+...+2^2009(1+2)
=6+2^3x3+....+2^2009x3
vậy A chia hết cho 3
chia hết cho 7 là tương tự chỉ khác là nhóm 3 số vào 1 nhóm
câu B tương tự câu A
cho mình nhé
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
Dãy trên có 2010 ( 2010 chia hết cho 3 ) lũy thừa nên có thể chia thành các cặp, mỗi cặp 3 lũy thừa
Có :
B = \(\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
B = \(3.13+...+3^{2008}.13\)
B = \(13.\left(3+...+3^{2008}\right)\)
=> B chia hết cho 13
Có :
B = \(3+3^2+3^3+3^4+...+3^{2010}\)
B = \(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
B = \(4.\left(3+3^3+...+3^{2009}\right)\)
=> B chia hết cho 4