K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Bạn có thể kiểm tra lại đề o , sai đề rồi

mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh

21 tháng 3 2017

n=1

161-151-1=0

0chia hết cho 225

21 tháng 3 2017

chứng minh đầy đủ đi bạn

22 tháng 1 2016

A = n⁵ - n 
= n(n - 1)(n + 1)(n² + 1)
= n(n - 1)(n + 1)(n² - 4 + 5) 
= n(n - 1)(n + 1)[(n-2)(n+2)+5] 
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) 
Vì n(n - 2)(n + 2)(n - 1)(n + 1) chia hết cho 5 (vì là tích 5 số nguyên liên tiếp)
Mà 5n(n - 1)(n + 1) chia hết cho 5 
=> n(n - 2)(n + 2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5 
=> A chia hết cho 5  
 

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

$n>1\Rightarrow n\geq 2$

$n^4+4k^4=(n^2)^2+(2k^2)^2+2.n^2.2k^2-4n^2k^2$

$=(n^2+2k^2)^2-(2nk)^2=(n^2+2k^2-2nk)(n^2+2k^2+2nk)$

Ta thấy,

$n^2+2k^2-2nk=2(k-\frac{n}{2})^2+\frac{n^2}{2}\geq \frac{n^2}{2}\geq \frac{2^2}{2}=2$

$n^2+2k^2+2nk\geq n^2\geq 4$

Do đó $n^4+4k^4$ là tích của 2 số mà mỗi số đều $\geq 2$ nên $n^4+4k^4$ là hợp số.