Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}+...+\dfrac{1}{1985}\)
\(A=\dfrac{1}{5}.\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{397}\right)\)
\(A=\dfrac{1}{5}.\left(1+\dfrac{1}{1+2}+\dfrac{1}{2+3}+...+\dfrac{1}{198+199}\right)\)
\(A=\dfrac{1}{5}.\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{198}-\dfrac{1}{199}\right)\)
\(A=\dfrac{1}{5}.\left(2-\dfrac{1}{199}\right)\)
\(A=\dfrac{397}{995}< \dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}+...+\dfrac{1}{1985}< \dfrac{9}{20}\left(đpcm\right)\)
1)a+3>b+3
=>a>b
=>-2a<-2b
=>-2a+1<-2b+1
2)x>0;y<0 =>x2.y<0;x.y2>0
=>x2.y<0;-x.y2<0
=>x2y-xy2<0
1.ta có a+3>b+3
suy ra -2a-6>-2b-6
=> (-2a-6)+5>(-2b-6)+5
=>-2a+1>-2b+1
2.vì x>0=> x^2>0 và y<0=>y^2>0
=> x^2*y<0 và x*y^2>0
=> x*y^2>x^2*y
=>x^2*y-x*y^2<0
1)
Ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x+2\right)^2+1\ge1>0\left(đpcm\right)\)
2)
Ta có:\(-x^2+8x-17=-x^2+8x-16-1=-\left(x^2-8x+16\right)-1=-\left(x-4\right)^2-1\le-1< 0\)
\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)
\(\left(x-5\right)\left(2x-1-x+5\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)
Ta có: \(5⋮5\)
\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)
\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)
đpcm
Đề sai.