Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
Đặt A = 35371 + 572016 + 922017
= 31342.4 . 33 + 574.504 + 924.504.92
= (34)1342.(..7) + (574)504 + (924)504.(...2)
= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)
= (...1).(...7) + (...1) + (...6).(...2)
= (...7) + (...1) + (...2)
= (...0) \(⋮\)10
Vậy \(A⋮\)10 (đpcm)
a) 61000 có chữ số tận cùng là 6 nên 61000 - 1 có chữ số tận cùng là 5. Suy ra 61000 - 1 chia hết cho 5.
b) 2002n . 2005n + 1 = 2002n . 2005n . 2005 = (2002 . 2005)n . 2005
2002 . 2005 có chữ số tận cùng là 0 => (2002 . 2005)n có chữ số tận cùng là 0 => (2002 . 2005)n . 2005 có chữ số tận cùng là 0 => 2002n . 2005n + 1 có chữ số tận cùng là 0 => 2002n . 2005n + 1 chia hết cho 2; 5 và 10.
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
chư số cuối của 122012 và 22016 đều là 2 mà 2-2=0
chư số cuối của 19215 và 111000 dều là 1 mà 1-1=0
tất cả các số cá tận cùng là 0 thì chia hết cho 10