Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m^2 + 4m +7 không chia hết (kch) cho 4
==> m^2 + 4m +7 chia hết cho 2 hoặc 4
mà 4m luôn chia hết cho 2
==> m^2 chia hết cho 2
==> m bắt buộc là số chia hết cho 2
*Lưu ý: Mình chỉ gợi ra hướng làm giúp bạn thui, đừng chép nguyên si vào nhé :v
Chúc bạn học tốt!
n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6.
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm)
n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n
Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6
;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6
Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿
a, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)
\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)
\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)
b, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)
\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)
\(M=6\cdot259+...+6^{96}\cdot259\)
\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)
Vậy \(M⋮259(đpcm)\)
a)Ta có: p2-1=(p-1).(p+1)
Vì p là số nguyên tố lớn hơn 3
=>p chia 3 dư 1 hoặc 2
*Xét p chia 3 dư 1=>p-1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3
=>p2-1 chia hết cho 3
*Xét p chia 3 dư 2=>p+1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3
=>p2-1 chia hết cho 3
Vậy p2-1 chia hết cho 3
a)Ta có: p2-q2=p2-1-q2+1=(p2-1)-(q2+1)
Từ câu a
=>p2-1 chia hết cho 3
q2-1 chia hết cho 3
=>(p2-1)-(q2+1) chia hết cho 3
Vậy p2-q2 chia hết cho 3
Mình nghĩ sửa 3 thành 1 sẽ hợp lí hơn
a)\(S=1+3^2+3^4+...+3^{2002}\)
=>\(3^2.S=3^2+3^4+3^6+...+3^{2004}\)
=>\(9S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(1+3^2+3^4+...+3^{2002}\right)\)
=>\(8S=3^{2004}-1\)
=>\(S=\frac{3^{2004}-1}{8}\)
b)\(S=1+3^2+3^4+...+3^{2002}\)
=>\(S=\left(1+3^2+3^4\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
=>\(S=91+...+3^{1998}\left(1+3^2+3^4\right)\)
=>\(S=91+...+3^{1998}.91\)
=>\(S=91\left(1+...+3^{1998}\right)\)
=>\(S=7.13.\left(1+...+3^{1998}\right)\) chia hết cho 7 (đpcm)
Ta có:
m+3m2+2m3=m.(1+3m+2m2)
=m.[1+(m+2m)+2m2]
=m.[(1+m)+2m.(m+1)]
=m.[(m+1).(2m+1)]
=m.(m+1).(2m+1)
Ta thấy: m.(m+1).(m+2) và (m-1).m.(m+1) là tích của 3 số tự nhiên liên tiếp nên chúng đều chia hết cho6=>Hiệu của chúng chia hết cho 6
=>m.(m+1).(m+2)-(m-1).m.(m+1) chia hết cho 6
Lấy m.(m+1) chung thì ta có:
=>m.(m+1).[m+2-(m-1)] chia hết cho 6
=>m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
m+3m2+2m3 =m (1 + 3m + 2m2) = m.(1+ m + 2m + 2m2) = m [(1+m) + 2m (1+ m)]
= m. (m+1).(2m+ 1) = m.(m+ 1). [(m + 2) + (m - 1)] = m(m+1)(m+2) - (m - 1)m (m + 1)
Nhận xét: m(m+1)(m+2) ; (m - 1)m (m + 1) đều chia hết cho 6 vì đều là tích của 3 số tự nhiên liên tiếp
=> m(m+1)(m+2) - (m - 1)m (m + 1) chia hết cho 6
=> m+3m2+2m3 chia hết cho 6 với m là số tự nhiên