K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

\(\frac{m}{n}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{1331}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)

\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)

\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-\left(1+\frac{1}{2}+...+\frac{1}{665}\right)\)

\(\frac{m}{n}=\frac{1}{666}+\frac{1}{667}+...+\frac{1}{1330}+\frac{1}{1331}\)

\(\frac{m}{n}=\left(\frac{1}{666}+\frac{1}{1331}\right)+\left(\frac{1}{667}+\frac{1}{1330}\right)+...+\left(\frac{1}{998}+\frac{1}{999}\right)\)

\(\frac{m}{n}=\frac{1997}{666.1331}+\frac{1997}{667.1330}+...+\frac{1997}{998.999}=\frac{1997k_1+1997.k_2+...+1997.k_{333}}{666.667...1331}\)

\(\frac{m}{n}=\frac{1997.\left(k_1+k_2+...+k_{333}\right)}{666.667...1330.1331}\) trong đó: k1;...; k333 là các thừa số phụ của các phân số trong tổng 

Nhận xét: phân số trên có tử chia hết cho 1997 là số nguyên tố; mẫu số không chia hết cho thừa số nguyên tố 1997 nên khi rút gọn tử vẫn chia hết cho 1997

=> m chia hết cho 1997

19 tháng 4 2020

Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)

\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)

\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)

\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)

NV
1 tháng 3 2020

\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{m+n+p}=0\)

\(\Leftrightarrow\frac{m+n}{mn}+\frac{m+n}{p\left(m+n+p\right)}=0\)

\(\Leftrightarrow\left(m+n\right)\left(\frac{pm+pn+p^2+mn}{mnp\left(m+n+p\right)}\right)=0\)

\(\Leftrightarrow\left(m+n\right)\left(n+p\right)\left(p+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-n\\m=-p\\p=-n\end{matrix}\right.\)

Cả 3 TH là như nhau

Ví dụ như TH1: \(\frac{1}{m^{2017}}+\frac{1}{-m^{2017}}+\frac{1}{p^{2017}}=\frac{1}{p^{2017}}\)

\(\frac{1}{m^{2017}-m^{2017}+p^{2017}}=\frac{1}{p^{2017}}\) (đpcm)