Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi n >1 ta đều có: \(\sqrt{n+1}>\sqrt{n}>\sqrt{n-1}>0\Rightarrow\sqrt{n+1}+\sqrt{n}>2\sqrt{n}>\sqrt{n}+\sqrt{n-1}>0\)
\(\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{n}+\sqrt{n-1}}\)\(\Rightarrow\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{n-\left(n-1\right)}{\sqrt{n}+\sqrt{n-1}}\)
\(\Rightarrow\sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}< \sqrt{n}-\sqrt{n-1}\)
\(\Rightarrow2\sqrt{n+1}-2\sqrt{n}< \frac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)đpcm.
Từ đó ta có:
\(2\sqrt{2}-2< \frac{1}{\sqrt{1}}=1;\)
\(2\sqrt{3}-2\sqrt{2}< \frac{1}{\sqrt{2}}< 2\sqrt{2}-2;\)
\(2\sqrt{4}-2\sqrt{3}< \frac{1}{\sqrt{3}}< 2\sqrt{3}-2\sqrt{2};\)
...
\(2\sqrt{1006010}-2\sqrt{1006009}< \frac{1}{\sqrt{1006009}}< 2\sqrt{1006009}-2\sqrt{1006008};\)
Cộng từng vế ta được:
\(2\sqrt{1006009}-2< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2\cdot1003-1\)
\(2004< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2005\)đpcm
Một bất đẳng thức HAY và rất chặt! 1 tổng các phân thức của căn thức bị chặn bởi 2 số tự nhiên liên tiếp!
\(\frac{1}{n\sqrt{n-1}}=\frac{\sqrt{n-1}}{\left(n-1\right)n}=\sqrt{n-1}.\frac{1}{\left(n-1\right)n}=\sqrt{n-1}\left(\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\sqrt{n-1}\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}\right)\)
\(=\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n-1}}{\sqrt{n}}\right)\)
\(< \left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\)
Áp dụng vài bài toán:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}\)
\(< 2\left(1-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2005}}\right)=2-\frac{2}{\sqrt{2005}}< 2\)
Vậy \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)