Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
- 3 góc tương ứng bằng nhau sẽ không bằng nhau
- Vì ta dễ thấy khi góc bằng nhau không có nghĩa là cạnh bằng nhau
- Vì cạnh không tương ứng với góc
A B C K H D E F
Ta giả sử AB < AC . Cần chứng minh AB + CH < AC + BK
Trên cạnh AC lấy điểm D sao cho AB = AD . Từ D lần lượt hạ các đường vuông góc với AB và AC lần lượt tại E và F.
Ta có tam giác ADE = tam giác ABK (đặc biệt) => DE = BK
Xét : \(AC+BK=AD+DC+CH=AB+CD+HF\)(Vì DEHF là hình chữ nhật => BK = DE = HF)
Mà trong tam giác vuông DFC có cạnh huyền CD nên ta có \(DC>CF\)
\(\Rightarrow AC+BK=AB+CD+HF>AB+CF+HF=AB+CH\)
A B C D 1 2 c a b
*) Nếu A = 2 góc B thì a2 = b2 + bc.
Kẻ AD là phân giác của góc A => góc A1 = A2 = A/ 2
=> góc A1 = A2 = góc B
Xét tam giác ABC và tam giác DAC có: góc C chung ; góc A2 = góc B
=> tam giác ABC đồng dạng với tam giác DAC ( g - g)
=> \(\frac{DC}{AC}=\frac{AC}{BC}\Rightarrow\frac{DC}{b}=\frac{b}{a}\) (1)
Do AD là p/g của góc BAC nên \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}\) (theo tính chất của dãy tỉ số bằng nhau)
\(\Rightarrow\frac{DC}{b}=\frac{a}{b+c}\) (2)
Từ (1)(2) => \(\frac{a}{b+c}=\frac{b}{a}\Rightarrow a^2=b\left(b+c\right)=b^2+bc\)
*) Ngược lại: Nếu a2 = b2 + bc => góc A = 2 . góc B
Kẻ AD là phân giác của góc A => \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}=\frac{a}{b+c}\)(3)
\(a^2=b^2+bc=b\left(b+c\right)\Rightarrow\frac{b}{a}=\frac{a}{b+c}\Rightarrow\frac{AC}{BC}=\frac{a}{b+c}\)(4)
từ (3)(4) => \(\frac{DC}{AC}=\frac{AC}{BC}\) mà có góc ACB chung
=> tam giác DAC đồng dạng với tam giác ABC (c - g - c)
=> góc A2 = góc B
mà góc A= 2. góc A2 nên góc A = 2. góc B
Bạn ơi 2 tam giác đồng dạng có 2 cặp cạnh bằng nhau thì chưa chắc đã bằng nhau nhé! Phải là tỉ số giữa 2 cặp cạnh t/ứng và 1 cặp góc t/ứng thì mới bằng nhau được. Đây là một số kiến thức quan trọng cần nhớ nè:
- 2 tam giác bằng nhau thì chắc chắn đồng dạng
- 2 tam giác đồng dạng chưa chắc đã bằng nhau
- Tam giác đồng dạng với nhau dựa vào tỉ số giữa các đoạn thẳng và góc.
- Tam giác đồng dạng bằng nhau cũng có 3 trường hợp giống tam giác thường và tam giác vuông:
+) C.c.c: tỉ số bằng nhau giữa 3 cặp cạnh t/ứng
+) G.g: tỉ số bằng nhau giữa 2 cặp góc t/ứng
+) C.g.c: tỉ số bằng nhau giữa 2 cặp cạnh t/ứng và 1 cặp góc t/ứng
Nếu bạn chưa hiểu thì inbox với mình, mình sẽ giảng cụ thể hơn. Chúc bạn học tốt!!!