Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
- 3 góc tương ứng bằng nhau sẽ không bằng nhau
- Vì ta dễ thấy khi góc bằng nhau không có nghĩa là cạnh bằng nhau
- Vì cạnh không tương ứng với góc
Hai tam giác bằng nhau thì đồng dạng
Hai tam giác đồng dạng thì chưa chắc bằng nhau
Hai tam giác đồng dạng chưa chắc sẽ bằng nhau còn khi 2 tam giác bằng nhau thì chắc chắn chúng sẽ đồng dạng. giải thích : Hai Δ có ti số đồng dạng là 1/2 hay 1/3 thì sẽ không bằng nhau tại vì 2 tam giác bằng nhau sẽ có tỉ lệ là 1:1
Hai tam giác đồng dạng với nhau nếu một trong hai cặp góc và một cặp cạnh tương ứng bằng nhau. ... Vì vậy, nếu hai tam giác bằng nhau, thì cạnh và góc bên thứ ba cũng bằng nhau
Hai tam giác đồng dạng với nhau nếu một trong hai cặp góc và một cặp cạnh tương ứng bằng nhau. Cơ sở của lý thuyết này là tính chất tổng 3 góc trong tam giác. Theo tính chất tổng góc, tổng ba góc trong một tam giác là 180°. Vì vậy, nếu hai tam giác bằng nhau, thì cạnh và góc bên thứ ba cũng bằng nhau
4 cm = 40 mm; 5 cm = 50 mm; 6 cm = 60 mm
Ta có: \(\frac{40}{8}=\frac{50}{10}=\frac{60}{12}\)
=> Tam giác ABC đồng dạng tam giác A'B'C'
a) Xét \(\Delta\)ABE và \(\Delta\)ACF có
\(\widehat{A}\)là góc chung
\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))
=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)
=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)
=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Xét \(\Delta\)AEF và \(\Delta\)ABC có
\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Và \(\widehat{A}\)góc chung
Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c) (1)
b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)
=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)
=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
Xét \(\Delta\)DEC và \(\Delta\)ABC có
\(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
\(\widehat{C}\)góc chung
=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c) (2)
Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF
=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)
Mà \(\widehat{AEB}\)= \(\widehat{CEB}\)= \(90^O\)
=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)
Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)
=> EH là phân giác góc FED
Bạn ơi 2 tam giác đồng dạng có 2 cặp cạnh bằng nhau thì chưa chắc đã bằng nhau nhé! Phải là tỉ số giữa 2 cặp cạnh t/ứng và 1 cặp góc t/ứng thì mới bằng nhau được. Đây là một số kiến thức quan trọng cần nhớ nè:
- 2 tam giác bằng nhau thì chắc chắn đồng dạng
- 2 tam giác đồng dạng chưa chắc đã bằng nhau
- Tam giác đồng dạng với nhau dựa vào tỉ số giữa các đoạn thẳng và góc.
- Tam giác đồng dạng bằng nhau cũng có 3 trường hợp giống tam giác thường và tam giác vuông:
+) C.c.c: tỉ số bằng nhau giữa 3 cặp cạnh t/ứng
+) G.g: tỉ số bằng nhau giữa 2 cặp góc t/ứng
+) C.g.c: tỉ số bằng nhau giữa 2 cặp cạnh t/ứng và 1 cặp góc t/ứng
Nếu bạn chưa hiểu thì inbox với mình, mình sẽ giảng cụ thể hơn. Chúc bạn học tốt!!!
thank bạn nhé