Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)
\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)
\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)
\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)
Từ $(1);(2)$ ta có đpcm.
1.
\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)
\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)
\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)
\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)
Từ $(1);(2)$ ta có đpcm.
\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=cos^2x-\frac{cos3x}{cosx}+sin^2x+\frac{sin3x}{sinx}\)
\(=1+\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=1+\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=1+\frac{2sin2x}{sin2x}=3\)
Giả sử các biểu thức đều xác định:
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)
\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)
\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)
Lời giải:
Tổng trên gồm \([2n-(n+1)]:1+1=n\)\([2n-(n+1)]:1+1=n\)
số hạng
Mỗi số hạng đứng trước \(\frac{1}{2n}\) đều lớn hơn hoặc bằng nó do \(n+1, n+2,....,2n-1\leq 2n\forall n\in\mathbb{N}^*\) thì \(\frac{1}{n+1}, \frac{1}{n+2},..., \frac{1}{2n-1}\geq \frac{1}{2n}\)
Suy ra:
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \underbrace{\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}}_{ \text{n lần}}=\frac{n}{2n}=\frac{1}{2}\) (đpcm)
Dấu bằng xảy ra khi \(n=1\)
ta có : \(VT=\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}=\dfrac{1-sin2x}{1+sin2x}=\dfrac{sin^2x-2sinx.cosx+cos^2x}{sin^2x+2sinx.cosx+cos^2x}\)
\(=\left(\dfrac{sinx-cosx}{sinx+cosx}\right)^2=\left(\dfrac{\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(x-\dfrac{\pi}{4}\right)}\right)=tan^2\left(x-\dfrac{\pi}{4}\right)\)
\(=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\left(đpcm\right)\)
\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)
\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)
Hay 1 cách khác :AM-GM
\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)
Tương tự là ta có ngay đpcm
Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)
\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)
\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)
Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)
\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)
Vậy BĐT được chứng minh.
Dấu = xảy ra khi a=b=c
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt
Lời giải:
Ta có:
\(\frac{1+\sin x}{1-\sin x}+\frac{1-\sin x}{1+\sin x}=\frac{(1+\sin x)^2+(1-\sin x)^2}{(1-\sin x)(1+\sin x)}\)
\(=\frac{1+\sin ^2x+2\sin x+1-2\sin x+\sin ^2x}{1-\sin ^2x}\)
\(=\frac{2(1+\sin ^2x)}{\cos ^2x}=\frac{2(\sin ^2x+\cos ^2x+\sin ^2x)}{\cos ^2x}\)
\(=\frac{4\sin ^2x+2\cos ^2x}{\cos ^2x}=4(\frac{\sin x}{\cos x})^2+2=4\tan ^2x+2=2(1+2\tan ^2x)\)
Ta có đpcm.
\(4cos^4x-2cos2x-\frac{1}{2}cos4x=4\left(\frac{cos2x+1}{2}\right)^2-2cos2x-\frac{1}{2}\left(2cos^22x-1\right)\)
\(=cos^22x+2cos2x+1-2cos2x-cos^22x+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)