K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2015

D=(7*1+7*7)+(73*1+7*7)+...+(72009*1+72009*7)

D=7*(1+7)+73*(1+7)+...+72009*(1+7)

D=7*8+73*8+...+72009*8

D=(7+73+...+72009)*8 chia hết cho 8(vì 8chia hết cho 8)

vậy D chia hết cho 8 

18 tháng 2 2015

bạn hãy làm thử chia hết cho 57 đi

bằng cách gộp 3 số hạng đó mà.

 

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà

6 tháng 10 2019

Bài 1 :

72x+3 . 75-2x : 7x + 7x = 1

- > 7(2x+3)+(5-2x)-7 + 7x = 1

- > 71 + 7x = 1

- > 7x = 1 - 7 = -6 - > x thuộc rỗng

27 tháng 12 2017

bài 1:a,

\(3^9.3:3^{10}+\left|2010^0\right|\)

=> \(3^9.3:3^{10}+\left|1\right|\)

=> \(3^9.3:3^{10}+1\)

=> \(3^{10}:3^{10}+1\)

=> 1+1

=> 2

b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)

=> \([4^2:8-735^0]^{2011}\)

=> \([2^4:2^3-735^0]^{2011}\)

=> \([2-1]^{2011}\)

=> 1

c, \(8^{2x}:8=512\)

=> \(8^{2x}:8=8^3\)

=> \(8^{2x}=8^4\)

=> 2x=4

=> x=2

27 tháng 12 2017

bài 2:

Theo đề ta có:

\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)

=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)

=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)

=> \(7^0.8+7^2.8+..+7^{2010}.8\)

\(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)

nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8

21 tháng 11 2016

Ta có :\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=\left(2+2^3+...+2^{2009}\right)\cdot3\) chia hết cho 3

=> A chia hết cho 3 ( đpcm )

Ta lại có : \(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2\cdot7+...+2^{2008}\cdot7\)

\(=\left(2+...+2^{2008}\right)\cdot7\) chia hết cho 7

Vậy A chia hết cho cả 3 và 7 ( đpcm )

21 tháng 11 2016

đpcm là gì hả bạn

6 tháng 7 2015

Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.

=> Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(n+2) chia hết cho cả 2 và 3.

c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]

                                 =n(n+1)(n+2)+n(n+1)(n-1)

Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp

=>Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(2n+1) chia hết cho 2 và 3.

 

14 tháng 7 2015

bài 3 nah không biết đúng hông nữa 

n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a

theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7

ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3

26 tháng 10 2016

A=1+4+42+43+...+42014

A=(1+4+42)+(43+45+46)+...+(42012+42013+22014)

A=21.(1+43+...+42012)

 

B=1+7+72+...+7101

B=(1+7)+(72+73)+...+(7100+7101)

B=8(1+72+...+7100)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM