Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
72x+3 . 75-2x : 7x + 7x = 1
- > 7(2x+3)+(5-2x)-7 + 7x = 1
- > 71 + 7x = 1
- > 7x = 1 - 7 = -6 - > x thuộc rỗng
(7^0+7^1+7^2+7^3+...+7^2010+7^2011):8
=(7^0+7^1)+(7^2+7^30+...+(7^2010+7^2011)
=(7^0.7^0+7^1.7^0)+...+(7^2010.7^0+7^2011.7^1)
=7^0+7^0+...+7^0
=7^0:8
Bài làm
\(A=\frac{2^2.10+2^3.6}{2^2.15-2^4}\)
\(A=\frac{2^2.10+2.2^2.6}{2^2.15-2^2.2^2.1}\)
\(A=\frac{2^2.\left(10+6\right).2}{2^2.\left(15-1\right).2^2}\)
\(A=\frac{2^2.16.2}{2^2.14.2^2}\)
\(A=\frac{16}{14.2}\)
\(A=\frac{8}{7.2}\)
\(A=\frac{8}{14}\)
\(A=\frac{4}{7}\)
Vậy \(A=\frac{4}{7}\)
\(B=\frac{2^9.15^{17}.75^3}{18^8.5^{24}.9^2}\)
\(B=\frac{2^9.\left(3.5\right)^{17}.\left(3.5^2\right)^3}{\left(2.3^2\right)^8.5^{24}.\left(3^2\right)^2}\)
\(B=\frac{2^9.3^{17}.5^{17}.3^3.5^6}{2.3^{19}.5^{24}.3^4}\)
\(B=\frac{2^8.1.1.1.5}{1.3^2.1.3}\)
\(B=\frac{2^8.5}{3^3}\)
\(B=\frac{1280}{27}\)
bài 1 :\(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}=\frac{1}{4}\)
\(\frac{9}{7}\cdot\left(\frac{3}{7}-\frac{1}{2}\right)=-\frac{9}{98}\)
\(-\frac{3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot-\frac{3}{7}\cdot\frac{3}{7}=\left(\frac{4}{9}+\frac{5}{9}-1\right)\cdot-\frac{3}{7}=-1\cdot-\frac{3}{7}=\frac{3}{7}\)
bài 2: \(x+\frac{2}{5}=\frac{9}{10}\)
\(x=\frac{9}{10}-\frac{2}{5}\)
\(x=\frac{1}{2}\)
x = \(\frac{9}{10}\)- \(\frac{2}{5}\)
x =\(\frac{9}{10}\) - \(\frac{4}{10}\)
x = \(\frac{5}{10}\) = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
ai thấy tớ đúng thì ủng hộ nha
tui đang âm
\(A=7+7^2+7^3+7^4+7^5\)\(+7^6+7^7+7^8\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)\(+\left(7^7+7^8\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\)\(\left(1+7\right)+7^7.\left(1+7\right)\)
\(=7.8+7^3.8+7^5.8+7^7.8\)
\(=8.\left(7+7^3+7^5+7^7\right)\)\(⋮2\)
\(\Rightarrow\)A là số chẵn
tk nha vì mấy bài kia có bn làm rồi nên mk ko làm nữa
bài 1:a,
\(3^9.3:3^{10}+\left|2010^0\right|\)
=> \(3^9.3:3^{10}+\left|1\right|\)
=> \(3^9.3:3^{10}+1\)
=> \(3^{10}:3^{10}+1\)
=> 1+1
=> 2
b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)
=> \([4^2:8-735^0]^{2011}\)
=> \([2^4:2^3-735^0]^{2011}\)
=> \([2-1]^{2011}\)
=> 1
c, \(8^{2x}:8=512\)
=> \(8^{2x}:8=8^3\)
=> \(8^{2x}=8^4\)
=> 2x=4
=> x=2
bài 2:
Theo đề ta có:
\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)
=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)
=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)
=> \(7^0.8+7^2.8+..+7^{2010}.8\)
Mà \(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)
nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8