K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

6 tháng 7 2016

\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)

Vậy ........

\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)

Vậy........

\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)

\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)

Vậy.......

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

chứng minh nó luôn bé hơn 0!!!

675675867876896978987985685686586

28 tháng 6 2016

a)-x2 -1=-(x2+1)

Vì x2 >= 0 nên x2 +1>0 nên -(x2+1)<0 hay -x2 -1<0

b)Vì (x+1)2 >=0 nên -(x+1)2 <=0. Phần này biểu thức bằng 0 với giá trị x=1 chứ không thể luôn âm được.

c)Theo b) -(x+1) <=0 nên -(x+1)2 -3<0

18 tháng 3 2020

A = x(x - 6) + 10

A = x^2 - 6x + 9 + 1

A = (x - 3)^2 + 1 > 1

B = x^2 - 2x + 9y^2 - 6y + 3

B = (x^2 - 2x + 1) + (9y^2 - 6y + 1) + 1

B = (x - 1)^2 + (3y - 1)^2 + 1 > 1

12 tháng 10 2017

P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2

Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)

\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)

\(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)

11 tháng 10 2017

P=-x2+4-5 =-x2-1

ta có -x 2 < hoặc bằng 0 với mọi x

=> P=-x2-1<hoặc bằng -1

=>P luôn luôn âm