Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 + y4 +(x+y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 +4xy3 + y4 = 2x4 +2y4 +4x2y2+4x3y+4xy3+2x2y2
= 2(x4 +y4 +2x2y2)+4xy(x2+y2) + 2x2y2= 2(x2 + y2)2 + 4xy(x2 + y2) +2x2y2
=2((x2 +y2) +2xy(x2+ y2) +x2y2) = 2(x2 + y2 + xy)2 \(\Rightarrow\) đpcm
BTBTVP, ta có:
\(2\left(x^2+xy+y^2\right)^2\)
= \(2x^4+2x^2y^2+2y^4\)
= \(x^4+x^4+2x^2y^2+y^4+y^4\)
= \(x^4+y^4+\left(x^2+y^2\right)^2\)
=\(x^4+y^4+\left[\left(x+y\right)^2\right]^2\)
= \(x^4+y^4+\left(x+y\right)^4\)
Ta có: \(x^4+y^4+\left(x+y\right)^4\)\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2x^4+2y^4+4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\left(dpcm\right)\)
C/M: \(\left(x+y\right)^4+x^4+y^4=2\left(x^2+xy+y^2\right)^2\)
\(VT=x^4+4x^3y+6x^2y^2+4xy^3+y^4+x^4+y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2\left(x^2+xy+y^2\right)^2\) = VP (đpcm)
a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2zx-2yz+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
a) Biến đổi vế trái ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2\left(a^2+b^2\right)=VP\)
Vậy đẳng thức trên được chứng minh
b) Biến đổi vế trái ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
c)Biến đổi vế trái ta có:
\(\left(x+y\right)^4+x^4+y^4\)
\(=x^4+y^4+4x^3y+6x^2y^2+4xy^3+x^4+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
a) (x-a)^4-(x+a)^4
=[(x-a)^2]^2-[(x+a)^2]^2
=[(x-a)^2-(x+a)^2][(x-a)^2+(x+a)^2]
=[(x-a-x-a)(x-a+x+a)][(x-a)^2+(x+a)^2]
=(-2a.2x)(x^2-2xa+a^2+x^2+2xa+a^2)
=(-2a.2x)(2x^2+2a^2)
=-4ax(2x^2+2a^2)
=-4ax.2(x^2+a^2)
x4 + y4 +(x+y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 +4xy3 + y4 = 2x4 +2y4 +4x2y2+4x3y+4xy3+2x2y2
= 2(x4 +y4 +2x2y2)+4xy(x2+y2) + 2x2y2= 2(x2 + y2)2 + 4xy(x2 + y2) +2x2y2
=2((x2 +y2) +2xy(x2+ y2) +x2y2) = 2(x2 + y2 + xy)2 \(\Rightarrow\) đpcm