\(^{a^8+b^8+c^8\ge a^2b^2c^2\left(ab+ac+bc\right)}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Ta có: 

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Cái bất đẳng thức áp dụng trong bài là:

\(x^2+y^2+z^2\ge xy+yz+zx\)

4 tháng 2 2017

  ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0 

dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1 

Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y) 

Tương tự ta có: y^3+z^3≥ yz(y+z) 

z^3+ x^3≥ xz(x+z) 

Cộng vế với vế ta có: 

2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz² 

Cộng 2 vế với x^3+y^3 +z^3 ta có: 

3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*) 

Theo cô si ta có: 

x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1) 

=> 3(x^3+y^3+z^3) ≥ 3(x+y+z) 

=> x^3+y^3+z^3 ≥ x+y+z 

=> dpcm 

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra khi: x = y =z

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\) 

Dấu "=" xảy ra khi a = b = c

14 tháng 1 2018

bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

27 tháng 2 2018

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

Ta sẽ chứng minh: \(a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(ab+bc+ac\right)\) (*)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta có: \(bdt\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Tiếp tục có: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+x^2z^2\)

Ta sẽ chứng minh: \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

Áp dụng bất đẳng thức AM-GM:\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xzy^2\\y^2z^2+z^2x^2\ge2\sqrt{y^2z^4x^2}=2xyz^2\\x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2yzx^2\end{matrix}\right.\)

Cộng theo vế: \(x^2y^2+y^2z^2+z^2x^2\ge xzy^2+xyz^2+yzx^2=xyz\left(x+y+z\right)\)

Vậy (*) đúng

Vậy bất đẳng thức cần chứng minh đúng

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

2 tháng 5 2018

Hỏi đáp ToánHỏi đáp Toán

2 tháng 5 2018

Mình giải hết cho bạn rùi nek :))

2 tháng 10 2019

Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\)\(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).

Cộng từng vế 3 bất đẳng thức trên ta được:

\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

=> đpcm.

5 tháng 2 2018

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)