K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2024

CM:A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{100^2}\) < 1

   \(\dfrac{1}{2^2}\) = \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}-\dfrac{1}{2}\)

   \(\dfrac{1}{3^2}\) = \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

    \(\dfrac{1}{4^2}\) = \(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)

   \(\dfrac{1}{100^2}\) = \(\dfrac{1}{100.100}\) < \(\dfrac{1}{99.100}\) = \(\dfrac{1}{99}-\dfrac{1}{100}\)

Cộng vế với vế ta có:

    \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{100^2}\)  = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\) < 1 (đpcm)

 

     

 

 

 

 

28 tháng 4 2016

Đặt vế trái là A ta có

\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}=\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)

=> A<1
 

10 tháng 1 2016

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2012^2}=\frac{1}{2012.2012}<\frac{1}{2011.2012}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2011.2012}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}<1\)

=>đpcm