Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{1}{20}\)
\(\Rightarrow D=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy \(D< \frac{1}{2}\)
\(D=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Nhận xét: \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow D< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy D < 1/2
Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
\(A>\dfrac{1}{40}.10+\dfrac{1}{50}.10+\dfrac{1}{60}.10=\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{3}{5}\)
Vậy \(A>\dfrac{3}{5}\)
Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)\(A< \dfrac{1}{31}.10+\dfrac{1}{41}.10+\dfrac{1}{51}.10< \dfrac{4}{5}\)
Vậy \(A< \dfrac{4}{5}\)
Do đó: \(\dfrac{3}{5}< A< \dfrac{4}{5}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}+\frac{1}{128}-\frac{1}{256}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}\)
\(A+2A=\left(\frac{1}{2}-\frac{1}{4}+...-\frac{1}{256}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{128}\right)\)
\(3A=1-\frac{1}{256}< 1\)
\(\Rightarrow A< \frac{1}{3}\).
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt
A =\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{20^2}=\frac{1}{2^2}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{20}\right)=\frac{1}{4}\left(2-\frac{1}{20}\right)=\frac{1}{2}-\frac{1}{80}< \frac{1}{2}\left(\text{đpcm}\right)\)