Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B với tâm O Đường tròn d: Đường tròn qua O với tâm I Đoạn thẳng j: Đoạn thẳng [D, A] Đoạn thẳng k: Đoạn thẳng [I, O] Đoạn thẳng l: Đoạn thẳng [B, E] Đoạn thẳng m: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [D, O] Đoạn thẳng p: Đoạn thẳng [A, B] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [C, B] Đoạn thẳng s: Đoạn thẳng [A, E] Đoạn thẳng t: Đoạn thẳng [D, B] Đoạn thẳng a: Đoạn thẳng [C, K] O = (1.07, -4.08) O = (1.07, -4.08) O = (1.07, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t H
a) Do DA và DC là các tiếp tuyến của đường tròn (O) nên DA = DC (T.c hai tiếp tuyến cắt nhau)
Tương tự EB = EC
Vậy nên DE = DC + CE = AD + BE
b) Ta thấy DA = DC; OA = OC nên OD là đường trung trực của đoạn AC.
Theo tính chất hai tiếp tuyến cắt nhau ta có \(OD\perp AC\)
Do AB là đường kính, C thuộc đường tròn (O) nên \(\widehat{ACB}=90^o\) hay \(BC\perp AC\)
Vậy nên OD//BC
c) Xét tứ giác ADEB có AD và BE cùng vuông góc với AB nên ADEB là hình thang vuông.
Xét hình thang vuông ADEB có I là trung điểm DE, O là trung điểm AB nên OI là đường trung bình hình thang ADEB.
Vậy thì \(OI=\frac{AD+BE}{3}=\frac{DE}{2}=ID\)
Vậy O nằm trên đường tròn \(\left(I,ID\right)\)
Lại có OI // DA //EB nên \(OI\perp AB\)
Vậy AB là tiếp tuyến của đường tròn \(\left(I,ID\right)\)
d) Do AD // BE nên áp dụng định lý Ta-let ta có:
\(\frac{AK}{KE}=\frac{DK}{KB}=\frac{AD}{BE}\)
Lại có \(\frac{AD}{BE}=\frac{DC}{CE}\Rightarrow\frac{AK}{KE}=\frac{DC}{CE}\)
Xét tam giác ADE có \(\frac{AK}{KE}=\frac{DC}{CE}\) nên CK // DA
Mà DA vuông góc với AB nên CK cũng vuông góc với AB.
Xét tam giác ADB có KH // DA nên \(\frac{DA}{KH}=\frac{BD}{KB}=\frac{DK+KB}{KB}=\frac{DK}{KB}+1\)
Xét tam giác ADE có KC // DA nên \(\frac{DA}{KC}=\frac{AE}{KE}=\frac{AK+KE}{KE}=\frac{AK}{KE}+1\)
Mà ta đã có \(\frac{DK}{KB}=\frac{AK}{KE}\) nên \(\frac{DA}{KH}=\frac{DA}{KC}\Rightarrow KH=KC\) hay K là trung điểm CH.