K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đường tròn d: Đường tròn qua O với tâm I Đoạn thẳng j: Đoạn thẳng [D, A] Đoạn thẳng k: Đoạn thẳng [I, O] Đoạn thẳng l: Đoạn thẳng [B, E] Đoạn thẳng m: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [D, O] Đoạn thẳng p: Đoạn thẳng [A, B] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [C, B] Đoạn thẳng s: Đoạn thẳng [A, E] Đoạn thẳng t: Đoạn thẳng [D, B] Đoạn thẳng a: Đoạn thẳng [C, K] O = (1.07, -4.08) O = (1.07, -4.08) O = (1.07, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t H

a) Do DA và DC là các tiếp tuyến của đường tròn (O) nên DA = DC (T.c hai tiếp tuyến cắt nhau)
Tương tự EB = EC

Vậy nên DE = DC + CE = AD + BE

b) Ta thấy DA = DC; OA = OC nên OD là đường trung trực của đoạn AC.

Theo tính chất hai tiếp tuyến cắt nhau ta có \(OD\perp AC\)

Do AB là đường kính, C thuộc đường tròn (O) nên \(\widehat{ACB}=90^o\) hay \(BC\perp AC\)

Vậy nên OD//BC

c) Xét tứ giác ADEB có AD và BE cùng vuông góc với AB nên ADEB là hình thang vuông.

Xét hình thang vuông ADEB có I là trung điểm DE, O là trung điểm AB nên OI là đường trung bình hình thang ADEB.

Vậy thì \(OI=\frac{AD+BE}{3}=\frac{DE}{2}=ID\)

Vậy O nằm trên đường tròn \(\left(I,ID\right)\)

Lại có OI // DA //EB nên \(OI\perp AB\)

Vậy AB là tiếp tuyến của đường tròn \(\left(I,ID\right)\)

d)  Do AD // BE nên áp dụng định lý Ta-let ta có:

\(\frac{AK}{KE}=\frac{DK}{KB}=\frac{AD}{BE}\)

Lại có \(\frac{AD}{BE}=\frac{DC}{CE}\Rightarrow\frac{AK}{KE}=\frac{DC}{CE}\)

Xét tam giác ADE có \(\frac{AK}{KE}=\frac{DC}{CE}\) nên CK // DA

Mà DA vuông góc với AB nên CK cũng vuông góc với AB.

Xét tam giác ADB có KH // DA nên \(\frac{DA}{KH}=\frac{BD}{KB}=\frac{DK+KB}{KB}=\frac{DK}{KB}+1\)

Xét tam giác ADE có KC // DA nên \(\frac{DA}{KC}=\frac{AE}{KE}=\frac{AK+KE}{KE}=\frac{AK}{KE}+1\)

Mà ta đã có \(\frac{DK}{KB}=\frac{AK}{KE}\) nên \(\frac{DA}{KH}=\frac{DA}{KC}\Rightarrow KH=KC\) hay K là trung điểm CH.

20 tháng 12 2018

a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).

c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0