Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
Bạn tự vẽ hình nhé :
a)\(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}\).\(\Delta BMI,\Delta CNI\)lần lượt vuông tại M,N có : BI = CI (I là trung điểm BC) ;\(\widehat{B}=\widehat{C}\)(cmt)
\(\Rightarrow\Delta BMI=\Delta CNI\left(ch-gn\right)\)
b)\(\Delta AIB,\Delta AIC\)có AI chung ; AB = AC (\(\Delta ABC\)cân tại A) ; IB = IC nên\(\Delta AIB=\Delta AIC\left(c.c.c\right)\)
=>\(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng) mà\(\widehat{AIB}+\widehat{AIC}=180^0\)(kề bù)\(\Rightarrow\widehat{AIC}=90^0\)
Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta AIC,\Delta AIN,\Delta INC\),ta lần lượt có :
AI2 + IC2 = AC2 ; AN2 = AI2 - IN2 ; NC2 = IC2 - IN2
=> AC2 - AN2 - NC2 = AI2 + IC2 - AI2 + IN2 - IC2 + IN2 = 2IN2
c) BM = CN (2 cạnh tương ứng của\(\Delta BMI=\Delta CNI\)) mà AB = AC
=> AB - BM = AC - CN hay AM = AN => \(\Delta AMN\)cân tại A
A B C I M N
a)\(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\widehat{MBI}=\widehat{NCI}\right)\)
Xét \(\Delta BMI\)và\(\Delta CNI:\hept{\begin{cases}\widehat{BMI}=\widehat{CNI}=90^0\\BM=CN\\\widehat{MBI}=\widehat{NCI}\end{cases}\Rightarrow\Delta BMI=\Delta CNI}\)(cạnh huyền góc nhọn)
b) Xét \(\Delta CNI:\widehat{CNI}=90^0\Rightarrow\)\(IN^2=IC^2-CN^2\left(Pytago\right)\left(1\right)\)
\(\Delta AIN:\widehat{INA}=90^0\Rightarrow IN^2=IA^2-AN^2\left(Pytago\right)\left(2\right)\)
Từ (1) và (2)\(\Rightarrow2IN^2=IC^2-CN^2+IA^2-AN^2=IC^2+IA^2-AN^2-NC^2\left(3\right)\)
Xét \(\Delta AIC:\widehat{AIC}=90^0\)(AI là đường trung tuyến và cũng là đường cao)
\(\Rightarrow AI^2+IC^2=AC^2\left(Pytago\right)\left(4\right)\)
Thay (4) vào 93), ta có: \(2IN^2=AC^2-AN^2-NC^2\left(đpcm\right)\)
c) I là trung điểm của BC=> AI là dường trung tuyến. Mà \(\Delta ABC\)cân tại A=> AI cũng là đường phân giác.
\(\Rightarrow\widehat{MAI}=\widehat{NAI}\)
Xét \(\Delta MAI\)và \(\Delta NAI:\hept{\begin{cases}\widehat{AMI}=\widehat{ANI}=90^0\\AI\\\widehat{MAI}=\widehat{NAI}\end{cases}\Rightarrow\Delta MAI=\Delta NAI}\)(cạnh huyền góc nhọn)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A.
Giải hơi muộn nhưng các bạn nhớ nha.
Câu 1.
Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Chứng minh cả DA là phân giác của góc MDN nữa nhé