Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c. \(4x^2+12x+9=\left(2x\right)^2+2\cdot2x\cdot3+3^2=\left(2x+3\right)^2\)
d. \(9x^2+30x+25=\left(3x\right)^2+2\cdot3x\cdot5+5^2=\left(3x+5\right)^2\)
e. \(4x^2-20x+25=\left(2x\right)^2-2\cdot2x\cdot5+5^2=\left(2x+5\right)^2\)
Ta có : \(B=x^4-4x^3+9x^2-20x+22=\left(x^4-4x^3+4x^2\right)+\left(5x^2-20x+20\right)+2\)
\(=x^2\left(x^2-4x+4\right)+5\left(x^2-4x+4\right)+2=x^2\left(x-2\right)^2+5\left(x-2\right)^2+2\)
\(=\left(x-2\right)^2\left(x^2+5\right)+2\ge2\). Dấu đẳng thức xảy ra khi x = 2
Vậy Min B = 2 <=> x = 2
B=x4-4x3+9x2-20x+22
=(x-2)4+4(x-2)3+9(x-2)2+2
Ta thấy:
\(\hept{\begin{cases}\left(x-2\right)^4\\4\left(x-2\right)^3\\9\left(x-2\right)^2\end{cases}}\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2+2\ge0+2=2\)
\(\Rightarrow B\ge2\)
Dấu = khi (x-2)4=4(x-2)3=9(x-2)2=0 =>x=2
Vậy Bmin=2 <=>x=2
a) A = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 > 1
\(\Rightarrow\) min A = 1 \(\Leftrightarrow\) x = 10
b) B = 4x2 - 4x + 2 = 4x2 - 4x + 1 + 1 = (2x - 1)2 + 1 > 1
\(\Rightarrow\) min B = 1 \(\Leftrightarrow x=\frac{1}{2}\)
\(A=x^2-20x+100=\left(x-10\right)^2\)
Với \(x=10\Rightarrow A=\left(10-10\right)^2=0\)
\(B=4x^2-4xy+y^2=\left(2x-y\right)^2\)
Với \(x=\dfrac{1}{2};y=1\Rightarrow B=\left(2.\dfrac{1}{2}-1\right)^2=0\)
\(C=4x^2-20x+25=\left(2x-5\right)^2\)
Với \(x=\dfrac{5}{2}\Rightarrow\left(2.\dfrac{5}{2}-5\right)^2=0\)
d, ko có x you ạ
D là với y = \(\dfrac{2}{3}\) nha bạn. Mình nhầm đề bài.
ai giúp với