Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
a) A = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 > 1
\(\Rightarrow\) min A = 1 \(\Leftrightarrow\) x = 10
b) B = 4x2 - 4x + 2 = 4x2 - 4x + 1 + 1 = (2x - 1)2 + 1 > 1
\(\Rightarrow\) min B = 1 \(\Leftrightarrow x=\frac{1}{2}\)
a) 4x2 - 20x + 25 - 36y2
= (2x - 5)2 - 36y2
= (2x - 5 - 6y)(2x - 5 + 6y)
b) x3 + x2 - 2x - 8
= (x3 - 8) + (x2 - 2x)
= (x - 2)(x2 + 2x + 4) + x(x - 2)
= (x - 2)(x2 + 2x + 4 + x)
= (x - 2)(x2 + 3x + 4)
d) x4 + 6x3 + 9x2 - 16
= x2(x2 + 6x + 9) - 16
= x2(x + 3)2 - 16
= (x2 + 3x)2 - 16
= (x2 + 3x - 4)(x2 + 3x + 4)
= (x2 + 4x - x - 4)(x2 + 3x + 4)
= [x(x + 4) - (x + 4)](x2 + 3x + 4)
= (x - 1)(x + 4)(x2 + 3x + 4)
a. \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c. \(4x^2+12x+9=\left(2x\right)^2+2\cdot2x\cdot3+3^2=\left(2x+3\right)^2\)
d. \(9x^2+30x+25=\left(3x\right)^2+2\cdot3x\cdot5+5^2=\left(3x+5\right)^2\)
e. \(4x^2-20x+25=\left(2x\right)^2-2\cdot2x\cdot5+5^2=\left(2x+5\right)^2\)
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
Câu 1:
\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)
\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)
\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)
Câu 2:
\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)
Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)
Ta có : \(B=x^4-4x^3+9x^2-20x+22=\left(x^4-4x^3+4x^2\right)+\left(5x^2-20x+20\right)+2\)
\(=x^2\left(x^2-4x+4\right)+5\left(x^2-4x+4\right)+2=x^2\left(x-2\right)^2+5\left(x-2\right)^2+2\)
\(=\left(x-2\right)^2\left(x^2+5\right)+2\ge2\). Dấu đẳng thức xảy ra khi x = 2
Vậy Min B = 2 <=> x = 2
B=x4-4x3+9x2-20x+22
=(x-2)4+4(x-2)3+9(x-2)2+2
Ta thấy:
\(\hept{\begin{cases}\left(x-2\right)^4\\4\left(x-2\right)^3\\9\left(x-2\right)^2\end{cases}}\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2+2\ge0+2=2\)
\(\Rightarrow B\ge2\)
Dấu = khi (x-2)4=4(x-2)3=9(x-2)2=0 =>x=2
Vậy Bmin=2 <=>x=2