K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Giải: 

26 tháng 1 2019

a)Có: AB//CE\(\Rightarrow\stackrel\frown{AE}=\stackrel\frown{BC}\Rightarrow AE=BC\)

Có: \(\Delta OCD\) cân tại O(OC=OD=R)\(\Rightarrow\)Đường cao \(\Delta OCD\) đồng thời là đường trung tuyến.

\(\Rightarrow\Delta BCD\) cân tại B

\(\Rightarrow BC=BD\)

Vậy AE=BC=BD.

b)Có CE//AB\(\Rightarrow CE\perp CD\)

\(\Rightarrow\widehat{ECD}=90^o\Rightarrow DE\) là đường kính.

\(\Rightarrow\) E,O,D thẳng hàng.

c)Có \(\widehat{AEB}=\widehat{EBD}=\widehat{BDA}=90^o\)(chắn nửa đường tròn)

\(\Rightarrow\) ADBE là hình chữ nhật.

27 tháng 4 2016

A C E D M I O' B O

Vì em là học sinh lớp 9 nên cô chỉ hưỡng dẫn thôi nhé :) Cố gắng thi tốt nhé :)

a. ADBE là hình thoi vì có hai đường chéo vuông góc và cắt nhay tại trung điểm mỗi đường.

b. Tứ giác DMBI có góc DMB + góc DIB = 180 độ nên nó là tứ giác nội tiếp.

c.  Cô nghĩa là chứng minh B, I, E thẳng hàng ms đúng, em xem lại xem.

Ta có: \(\widehat{MIE}=\widehat{MDB}=\widehat{MEB}\)  suy ra tam gaisc MIE cân tại M hay MI = ME. Lại có ME = MD nên MD = MI.

d.Hệ thức có được là do  \(\Delta BDC\sim\Delta IMC\left(g-g\right)\)

e. Ta chứng minh \(\widehat{O'IC}=\widehat{MIB}\)

Thật vậy, \(\widehat{O'IC}=\widehat{O'CI}=\widehat{DEA}=\widehat{MDO}=\widehat{MIB}\).

Khi đó \(90^0=\widehat{O'IC}+\widehat{O'IB}=\widehat{MIB}+\widehat{O'IB}\)

Vậy MI vuông góc O'I hay MI là tiếp tuyến (O')

31 tháng 3 2020

Vì CE là đường kính của (O)→DE⊥DC→DE//AB(CD⊥AB)

\(\widehat{DAB}=180^o-\widehat{ADE}=\widehat{ABE}\)

→DBED là hình thang cân

Ta có: O,H là trung điểm CE,CB→OH là đường trung bình ΔCBE

→BE=2OH→AD=2OH vì ABED là hình thang cân

Vì CECE là đường kính →BC⊥BE

\(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)

Gọi MI∩BC=F. Vì CD⊥AB=I, M là trung điểm AD

\(\widehat{CIF}=\widehat{MID}=\widehat{MDI}=\widehat{ADI}=\widehat{IBC}\)

→IF⊥BC

Lại có OH⊥BC→OH//MI (đpcm)
Nguồn: hangbich

18 tháng 1 2022

đề bài có cho O,H là trung điểm đâu ?