Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA Có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b+c}\)
<=>\(\frac{a+b+c}{a+b-c}=1\)
<=>\(a+b+c=a+b-c\)
<=>\(2c=0=>c=0\)
Từ \(\left(a+b+c\right):\left(a+b-c\right)=\left(a-b+c\right):\left(a-b-c\right)\)
\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}\)
\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)\(\Rightarrow\left(a+b+c\right)-\left(a+b-c\right)=0\)
\(\Rightarrow a+b+c-a-b+c=0\)\(\Rightarrow2c=0\)\(\Rightarrow c=0\)( đpcm )
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Cộng 1 vào mỗi tỉ số,ta được :
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0 thì : b + c = -a ; c + a = -b ; a + b = -c
\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne\) 0 thì : b + c = a + c = a + b \(\Rightarrow\)a = b = c
\(\Rightarrow P=2+2+2=6\)
Ý bạn là sao nhỉ?
Sao cho số thực a,b,c thỏa mãn a=b=c rồi lại chứng minh a=b=c