Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
Bạn thay 0 vào rồi ra P(0) = 0 và Q(0) = -1/4
=> x = 0 là nghiệm của P(x) nhưng ko là nghiệm của Q(x)
a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Mà \(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)
b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà \(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)
a,Ta có : \(P=x^7-x^2+x^5-x^4-5x+7x-2\)
\(=x^7-x^2+x^5-x^4+2x-2\)
\(Q=x^4-5x^2+x-x^5-x^7-x^2-1\)
\(=x^4-6x^2+x-x^5-x^7-1\)
b, Ta có : \(P+Q=\left(x^7-x^2+x^5-x^4+2x-2\right)+\left(x^4-6x^2+x-x^5-x^7-1\right)\)
\(=x^7-x^2+x^5-x^4+2x-2+x^4-6x^2+x-x^5-x^7-1\)
\(=-7x^2+3x-3\) (Có j sai ib cj , e nhé!)
c, \(Q+A=P\Leftrightarrow A=P-Q\) thay số vào tính nha.