Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
a, Thay x=-1 vào biểu thức A ta có:
\(A=2\left(-1\right)^2+\left(-1\right)+1\)
\(A=2.1+\left(-1\right)+1\)
\(A=2\)
Thay \(x=\dfrac{1}{4}\) vào biểu thức A ta có:
\(A=2\left(\dfrac{1}{4}\right)^2+\dfrac{1}{4}+1\)
\(A=2.\dfrac{1}{16}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{2}{8}+1\)
\(A=\dfrac{11}{8}\)
b, Thay x=-1; y=3 vào biểu thức B ta có:
\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)
\(B=1.9-3-1+27\)
\(B=2+27\)
\(B=29\)
c, Thay x=-1 vào biểu thức C ta có:
\(C=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)
\(C=1^4+1^6+1^8+1^9+...+1^{100}\)
\(C=100\)
d, Thay x+y=3; xy=-5 vào biểu thức D ta có:
\(D=3.\left(x+1\right).\left(y+1\right)\)
\(D=3.\left[\left(x.y\right)+1\right]\)
\(D=3.\left[\left(-5\right)+1\right]\)
\(D=3.\left(-4\right)\)
\(D=-12\)
Tích mình nha!!!
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
1,
\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)
2,
\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)
3, Làm tương tự câu 2
5,
\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)
6,
\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)
7,
\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)
9,
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
\(a\)) \(xy+x^2y^2+x^3y^3+x^4y^4+...+x^{10}y^{10}\)
\(\Rightarrow xy+\left(xy\right)^2+\left(xy\right)^3+\left(xy\right)^4+...+\left(xy\right)^{10}\)
Mà \(x=-1\) , \(y=1\) nên \(xy=\left(-1\right).1=-1\)
\(\Rightarrow-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{10}\)
\(\Rightarrow-1+1-1+1-...+1\)\(=0\)
Vậy …..
\(b\)) Làm tương tự như phần a) , ( nhóm cả x,y,z vào trong ngoặc rồi đặt số mũ 1,2,3,4,…,10 ra ngoài)
1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)
Tại x=-1, y=1 thay vào ta được: P=4
2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)
\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)
3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)
Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0
4) Ta thấy 51x+26y=2000
CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2
Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)
vậy x=2, y=73
5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)
Mà VP chẵn => y lẻ => y=1,3,5
Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
d.
Thay x = 1 và y= -1 vào biểu thức ta được:
\(1^{10}.\left(-1\right)^{10}+1^9.\left(-1\right)^9+1^8.\left(-1\right)^8+...+1.\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)